
Explaining Type Errors
Brent A. Yorgey

Hendrix College

yorgey@hendrix.edu

Richard A. Eisenberg

Bryn Mawr College

rae@cs.brynmawr.edu

Harley D. Eades III

Augusta University

harley.eades@gmail.com

Every beginning student of programming—that is, every student

with the ill fortune of having a language with a static type system

foisted upon them by a well-intentioned yet sadistic instructor—is

well-acquainted with the Dreaded Type Error Message:

Couldn't match expected type (t, b0) with actual type Int
In the first argument of fst, namely p

In the expression: fst p
In the first argument of \ f -> f (3 :: Int), namely
(\ p -> fst p)

Why do type error messages have to be so terrifying? Can’t we

do a be�er job explaining type errors to programmers?

We propose two interrelated theses:

1. We ought to move away from static error “messages” and

towards interactive error explanations.
2. We ought to consider the problem of generating error ex-

planations in a more systematic, disciplined, and formal way.
Explaining errors to users shouldn’t just be relegated to the

status of an “engineering issue”, but ought to have all the

tools of programming language theory and practice applied

to it.

1 �e curse of information
Consider a standard version of the simply typed lambda calculus

shown in Figure 1, with some arbitrary set of base types B and

typing annotations on lambda-bound variables.

t ::= x | λx :τ . t | t1 t2
τ ::= B | τ1 → τ2

Γ ::= · | Γ,x : τ

x : τ ∈ Γ
Γ ` x : τ

Γ,x : τ1 ` t : τ2
Γ ` λx :τ1. t : τ1 → τ2

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1
Γ ` t1 t2 : τ2

Figure 1. �e simply typed lambda calculus

A typical implementation of a type checker for this language

recurs through the structure of a term, adding bindings to the

context as it recurs through lambdas, and checking that the types

match up appropriately at each application. If the types don’t match,

some sort of error message is generated:

if (τ1 , τ ′
1
)

then throwError “Mismatch: expected {τ1}, actual {τ ′
1
}”

else …

Of course, this error message lacks any sort of context. One prob-

lem is that it may be di�cult for the programmer to even �gure out

which part of their program the error corresponds to, especially if

the mismatch happened deep inside a large term. �is problem is

not too hard to solve, by retaining information about the source

code locations of terms, and possibly by making use of appropri-

ate editor support for highlighting the locations of reported error

messages; of course, most real-world language implementations

actually do this.

However, a deeper problem is that even if the programmer knows

where in their program the error message came from, they may not

understand why it is an error: for example, where did the two types

in question come from, and why does the type checker think they

ought to be equal?

A natural reaction to this problem is to add more information to

the error message: for example, highlighting a larger portion of the

term containing the problematic subterm, including the types of

variables mentioned in the term, or even giving suggestions about

potential �xes. However, this is likely to be unhelpful in the long

run:

• How do we decide which information to include in a given

message? If we include all possible information (whatever

that even means!), the message will be impossibly large. On

the other hand, if we are more selective, we may end up

omi�ing information which would have been helpful—not

to mention that the helpfulness of any particular informa-

tion varies depending on the individual programmer and

their background.

• Even if we somehow �gure out which information would

be most helpful to include, paradoxically, it may not be

helpful to include it! Beginners, in particular, may be less
likely to read large error messages—even when those error

messages contain information that would genuinely help

them—because the messages seem overwhelming or intimi-

dating. Experts also may prefer less information, because

in many cases they do not need it, and they would rather

be able to see more error messages on the screen at once.

It seems we can’t win: programmers will be confused if there is

not enough information about what went wrong; but if we try to

presentmore information, it is likely to be unhelpful, overwhelming,

or both.

2 Interactivity to the rescue
�e problem of how much information to include in error messages

is actually a red herring. �e real problem is that for reasons of

history and technical convenience, we are stuck thinking in a frame-

work that is terminal-based and oriented towards batch processing.

Even the term “errormessage” itself seems to presuppose this mode

of interaction.

Suppose, instead, that the programmer is allowed to explore errors
interactively: they are initially presented with a concise description

of the error, and then they can incrementally explore additional

information—for example, by expanding nodes in a tree correspond-

ing to questions they might want to ask. �is solves both problems

outlined above:

∀τ1. Γ 0 t1 : τ1 → τ2

Γ 0 t1 t2 : τ2
LhsTy/

Γ ` t1 : τ1 → τ2 Γ 0 t2 : τ1

Γ 0 t1 t2 : τ2
RhsTy/

Figure 2. Some untyping rules for the STLC

• We do not have to decide what information to include up

front; we can think of the error explanation as a lazy tree

containing all the information we could ever conceivably

generate about the error and its causes. �e programmer

then gets to interactively select exactly the information they

want to see.

• �e programmer is less likely to be overwhelmed, since the

initial message they are shown can be kept short and to

the point. Even if they end up looking at the same informa-

tion that a static, batch error message might have included,

processing and assimilating the information will still be

psychologically easier when they are able to explore the

information incrementally.

3 How to explain things
So, how do we go about generating such error explanations? It

is here that we think the tools of programming language theory

can be fruitfully applied. On the face of it, type errors do not

seem like a very “o� the beaten track” topic at all. �ere was a

spate of work on explaining type errors in the 1990’s and early

2000’s (for example, Beaven and Stansifer (1993); Chitil (2001);

Simon et al. (2000)), but this line of work seems to have mostly

died out. �ough there is ongoing work on tracking type and error

provenance (Augustsson (2014) is a representative example), we

are not aware of more recent work taking a principled, PL-style

approach to the problem of explaining type errors to programmers.

When a program has a valid type, how do we explain it? �e

answer to this is well-known in the PL community: a typing deriva-
tion is a (constructive) proof that a given term has a given type,

and a constructive proof is simply a detailed, logically rigorous

explanation. If we want a type inference algorithm to explain itself,

we can have it return an entire typing derivation, not just a type.

So, when a program doesn’t type check, how should we explain

it? Given the discussion in the previous paragraph, the answer

ought to be clear: with an untyping derivation, that is, a constructive
proof of untypability! We can extract information from this to show

to the programmer, or we can simply let them interactively explore

it. �at is, to be clear, we propose that an untyping derivation

itself should form the core of the tree structure making up an error

explanation (though actually it should probably be more like a

zipper onto the untyping derivation, since the explanation should

start “focused in” on the speci�c location of an error, rather than

on the top-level program).

Let’s look at a simple example. Figure 2 shows just two of the

rules for untyping derivations for the simply typed lambda calculus;

we pronounce Γ 0 t : τ as “t does not have type τ in context Γ”.
Rules LhsTy/ and RhsTy/ enumerate the ways that an application

can fail to have a given type: t1 t2 does not have type τ2 if either
t1 does not have an appropriate function type, or if t1 does have

an appropriate type but t2 does not have the right type to be its

argument.

How do we know when we have the de�nition of untyping

derivations correct for a given type system? We can justify a partic-

ular de�nition of untyping by proving some metatheorems relating

it to typing. For example, we certainly want a metatheorem of the

form

∀tτ . (Γ 0 t : τ) =⇒ ¬(Γ ` t : τ).
For some type systems we can prove the converse as well. If we

want an untyping derivation to somehow encompass all possible

errors in a term, rather than just picking one (corresponding to the

di�erence between a type checking algorithm that stops as soon as

an error is encountered and one which tries to continue and collect

additional errors), we could try to prove a uniqueness theorem—for

a given triple of (Γ, t ,τ) there is at most one untyping derivation.

�ere are many remaining questions:

• �ere is still a lot of latitude in designing the rules for un-

typing derivations. For example, one could imagine adding

another rule for the STLC:

Γ ` t1 : τ NotArrow(τ)
Γ 0 t1 t2 : τ2

�is rule says that an application does not have a type if

its LHS does have a type, but not an arrow type. �is rule

is actually subsumed by rule LhsTy/, but might be more

comprehensible to programmers in cases when it applies.

Is there a systematic way to approach the task of choosing

rules for building untyping derivations?

• Is there some way to mechanically derive untyping deriva-

tion rules from the rules of a type system? De Morgan-type

laws may play a starring role, but there are likely to be

subtleties, given considerations such as the previous bullet

point.

• Although building appropriate untyping rules seems straight-

forward for natural-deduction-style systems, it becomes

much trickier when trying to explain uni�cation failures;

the precise algorithms used to do uni�cation seem to ma�er

quite a bit. What is the right way to explain uni�cation

failures to programmers?

4 Proposal
In our talk, we will (a) motivate interactive error explanations

and untyping derivations, (b) present several variant systems of

untyping rules for the STLC, with appropriate metatheorems all

formalized in Agda, (c) share some preliminary thoughts on how

to explain uni�cation errors.

References
Lennart Augustsson. 2014. Type Error Provenance. h�ps://www.youtube.com/watch?

v=rdVqQUOvxSU.
Mike Beaven and Ryan Stansifer. 1993. Explaining type errors in polymorphic lan-

guages. ACM Le�ers on Programming Languages and Systems (LOPLAS) 2, 1-4
(1993), 17–30.

Olaf Chitil. 2001. Compositional Explanation of Types and Algorithmic Debugging of

Type Errors. In Proceedings of the Sixth ACM SIGPLAN International Conference on
Functional Programming (ICFP’01). ACM, Firenze, Italy, 182–196. h�p://www.cs.
kent.ac.uk/pubs/2001/1811

Axel Simon, Olaf Chitil, and Frank Huch. 2000. Typeview: A Tool for Understanding

Type Errors. In Dra� Proceedings of the 12th International Workshop on Imple-
mentation of Functional Languages, Markus Mohnen and Pieter Koopman (Eds.).

Aachener Informatik-Bericht 00-7, RWTH Aachen, Aachen, Germany, 182–196.

h�p://www.cs.kent.ac.uk/pubs/2000/1899

2

https://www.youtube.com/watch?v=rdVqQUOvxSU
https://www.youtube.com/watch?v=rdVqQUOvxSU
http://www.cs.kent.ac.uk/pubs/2001/1811
http://www.cs.kent.ac.uk/pubs/2001/1811
http://www.cs.kent.ac.uk/pubs/2000/1899

	1 The curse of information
	2 Interactivity to the rescue
	3 How to explain things
	4 Proposal
	References

