
Separation of Proof and Program

The Trellys Project

University of Iowa
Harley Eades, Garrin Kimmel, Fu Peng, and Aaron Stump.

University of Pennsylvania
Chris Casinghino, Vilhelm Sjöberg, and Stephaine Weirich.

Portland State University
Nathan Collins, Ki-Yung Han, and Tim Sheard.

MVD 2011

Introduction

The design of a core language of a new dependently typed
programming language Trellys.

Separation of Proof and Program (Sep3).

The logical fragment.
Equality, explicit conversions, a new termination predicate, case
splitting on programs, and induction using a primitive ordering.

The programmatic fragment.
General recursion, explicit conversions, and case splitting on
programs.

Harley Eades

Separation of Proof and Program

Sep3

Sep3 is a call-by-value language that consists of two fragments,
a logical fragment and a programmatic fragment.

The language syntactically separates the logical and programmatic
fragments.
The logical fragment is a predicative higher-order logic.
While the programmatic fragment contains general recursion and
type:type.

The two fragments are separate, but they are linked.
Proofs can “talk” about programs, but are not allowed to run them.
Programs can contain proofs.

programs proofs6=
Harley Eades

Separation of Proof and Program

The Logical Fragment

A predicative higher order logic.
The logic is weakly constructive. What this means is that there is
only one predicate that forces the logic to be non-constructive.

The logical fragment is compile time only.
That is all proofs are erased during compile time.

The logic has the following as primitives.
Disjunction, existential types, absurdity, higher-order predicative
quantification, implication, propositional equality, explicit
conversions, induction, and a new termination predicate.

Harley Eades

Separation of Proof and Program

Equality and Conversion

The logic of Sep3 has a primitive notion of propositional equality.
This equality is a typed equality and expresses when two programs
are equivalent.
Intro. form: Γ ` join n m : t1 = t2.
Use: Suppose |t | is a function that erases all the proofs from the
program t then we if |t1| n t ′ and |t2| m t ′ and t1 and t2 are
typeable then we may conclude that t1 and t2 are equivalent with
the proof join.

Explicit conversion adds the ability to make use of equalities
between programs.

Elim. form: Γ ` conv p by eqpf at hole.p : [t2/hole]P
Use: If we know p is a proof of [p1/hole]P, and we can prove
t1 = t2 then we can replace t1 with t2 in [p1/hole]P and obtain a
new proof of [p2/hole]P.

Harley Eades

Separation of Proof and Program

Termination

The logic contains a new predicate called the termination
predicate.

The termination predicate internalizes the notion of termination.
Predicate form: t!.
Explanation: For some program t if we can prove t normalizes then
we may conclude t!.

We not only need to show that t normalizes, but that the normal
form of t can be judged a value.

Intro. form: Γ ` valax t : t!.
Use: If we can judge t a value, denoted Γ ` val t , then we may
conclude with the proof Γ ` valax t : t! which states that t has a
value.

Forms that may be judged values:
λ-abstractions, Type, recursors, data type constructors whose
arguments are values, and variables marked as values.

Harley Eades

Separation of Proof and Program

Termination: An Example

Example

Suppose t is a program and v is t ’s value. Then

|t | ↓ |v |
Γ ` t : t ′

Γ ` v : t ′

Γ ` join m n : t = v
Γ ` val v

Γ ` valax v : [v/hole](hole!)

Γ ` conv(valax v) by (join m n) at hole.(valax hole) : t!

Harley Eades

Separation of Proof and Program

Termination

How can we use the termination predicate?
If p is a proof of t! for some program t then t can be used as a
value.

Form: Γ ` val tcast t by p.
tcase provides the ability to case split on the termination behavior
of programs.

DISCLAIMER: t! is not constructive.

Form: Γ ` tcase t [u] of abort → p1 | ! → p2 : P.
Use: For some program t if p1 is a proof of some predicate P
assuming t! and p2 is a proof of P assuming t diverges then
tcase t [u] of abort → p1 | ! → p2 is a proof of P.

Harley Eades

Separation of Proof and Program

Induction

Sep3 has a primitive notion of structural course-of-values
induction.

Form: Γ ` ind f x : t1, u.p : ∀x : t1.∀u : x!.P.
Use: If p is a proof of some predicate P assuming
∀y : t2.∀u : y < x .[y/x]P holds then we can prove P for any
program x of type t1.

Harley Eades

Separation of Proof and Program

The Programmatic Fragment

The programmatic fragment has a collapsed syntax. Terms and
types are all generated by the same syntactic category.

Type:Type

General recursion.
Form: Γ ` rec f x : t1.t : Πx : t1.t2.

Explicit conversions.

Data types and case splitting on programs.
Intro. Form: data C t where {C1 : t1, . . . , Cn : tn}.
Elm. Form: case t [eq_pf] of C1 t1 . . . tn | · · · | Ck t ′1 . . . t ′2 | done.

Harley Eades

Separation of Proof and Program

Concluding remarks

Future work.
Complete the meta-theory.

Design and implement the surface language.

Thank you all for listening.

Harley Eades

Separation of Proof and Program

