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The Big-Big Picture

Inductive Data:

..., , ,

Coinductive Data:

data Tree (A : Type) : Type where
  Leaf : A → Tree A
  Node : Tree A → Tree A → Tree A

codata Stream (A : Type) : Type where
  cons : A → Stream A → Stream A
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The Big-Big Picture

However, in type theory, inductive and coinductive types are 
not well understood.

Coq is not type safe [Giménez:1997].

Agda does not allow mixing them.
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The Big-Big Picture

How can we fix these problems?

Solution: Duality in computation.
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The Big-Little Picture

First, we must understand duality in intuitionistic logic.

Intuitionistic logic with perfect duality is called bi-
intuitionistic logic.

Problem: Categorical model is not well 
understood [Crolard:2001].
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Classical logic is rich with duality.

Even implication has a dual:

Subtraction: A ∧ ¬B = ¬(A ⇒ B)

Bi-intuitionistic Logic
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Intuitionistic subtraction was first studied by [Rauszer:
1974,1977].

In CS Crolard was the first to introduce the use of subtraction 
in subtractive logic [Crolard:2001].

Application: Constructive coroutines [Crolard:2004].

In LL, Lambek introduced subtraction in Bilinear Logic 
[Lambek:1993,Lambek:1995].

Bi-intuitionistic Logic
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Semi-Bilinear Intuitionistic Logic
(Formulas) A,B,C ::= ? |> | 1 | 0 |A( B |A� B

|A ⌦ B |A � B |A ⇥ B
|A + B | !A | ?A

(Contexts) �,� ::= · |A |�,�0

� ` A,�
�0,B ` �0

�,�0,A( B ` �,�0 impL
�,A ` B

� ` A( B,�
impR

A ` B,�
�,A� B ` � subL

�0 ` A,�0
�,B ` �

�,�0 ` A� B,�,�0
subR
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Categorical Investigation
The Three Perspectives of Computation

Type Theory

Logic Category Theory
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In [Crolard:2001] Crolard showed that the categorical model 
using bi-[CCC]s for subtractive logic is degenerative.

There is at most one morphism between any two objects.

However, this collapse does not occur for categorical models 
of linear logic.

Subtractive Logic
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Categorical Model

Monoidal Category:

(C,⌦, T,↵A,B,C ,�A, ⇢A)

C⇥ C
⌦ - C (A⌦B)⌦ C

↵A,B,C- A⌦ (B ⌦ C)

T ⌦A
�A - A A⌦ T

⇢A - A
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Categorical Model

Monoidal Category:

(A⌦B)⌦ (C ⌦D)

((A⌦B)⌦ C)⌦D

↵A⌦
B,

C,
D

-

A⌦ (B ⌦ (C ⌦D))

↵
A,B,C⌦D

-

(A⌦ (B ⌦ C))⌦D

↵A,B,C ⌦ idD

? ↵A,B⌦C,D - A⌦ ((B ⌦ C)⌦D)

idA ⌦ ↵B,C,D

6
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Categorical Model

Monoidal Category:

(A⌦ T )⌦B
↵A,T,B - A⌦ (T ⌦B)

A⌦B
� idA

⌦
�B

⇢
A ⌦

id
B -

�T = ⇢T : T ⌦ T ! T
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Categorical Model

Symmetric Monoidal Category:

A⌦B
�A,B- B ⌦A

(A⌦B)⌦ C
↵A,B,C- A⌦ (B ⌦ C)

�A,B⌦C- (B ⌦ C)⌦A

(B ⌦A)⌦ C

�A,B ⌦ idC

? ↵B,A,C- B ⌦ (A⌦ C)
idB ⌦ �A,C- B ⌦ (C ⌦A)

↵B,C,A

?

�B,A � �A,B = idA⌦B
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Categorical Model

Symmetric Monoidal Category:

�T,T : T ⌦ T ! T ⌦ T idT⌦T : T ⌦ T ! T ⌦ T
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Categorical Model

Symmetric Monoidal Category:

�T,T : T ⌦ T ! T ⌦ T idT⌦T : T ⌦ T ! T ⌦ T

�T,T , idT⌦T
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Categorical Model
Closed Symmetric Monoidal Category:

For any object B 2 C0 the functor � ⌦ B : C ! C has a right adjoint functor

B ( � : C ! C. This means that for all objects A,B,C 2 C0, we have the

following bijection:

C[A⌦B,C]

⇠
=

C[A,B ( C]

that is natural in all arguments. This adjunction implies the following UMP:

C
f- B ( E

C ⌦ B
f ⌦ idB-

(B ( E )⌦ B

E

appE

?
g

-
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Categorical Model
Bilinearly distributive category:

SMCC: 

SMCCC:

Distributive:

(C,�, I, ↵̃A,B,C , �̃A, ⇢̃A,�)

(C,⌦,T,↵A,B,C , �A, ⇢A,()

distLL A B C : A ⌦ (B � C)! (A ⌦ B) � C
distRR A B C : (B � C) ⌦ A! B � (C ⌦ A)
distLR A B C : A ⌦ (B � C)! B � (A ⌦ C)
distRL A B C : (B � C) ⌦ A! (B ⌦ A) � C
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Categorical Model
Start with a symmetric monoidal closed category.

Think of linear implication, and tensor.

However, this model does not handle multiple conclusions.

Extend the model to be linearly distributive [Cockett, 
Seely, Trimble, Blute : 1997, 1999].

Add the coclosure, that is, subtraction. 

Interpret sequents as:
    

[[� ` �]] = � : [[�]]! [[�]]
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Categorical Model

Theorem 1. Assume C is an arbitrary bilinearly distributive category. If � ` �, then

there exists a morphism f 2 C[[[�]], [[�]]].
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A new idea!

Subtractive logic has a simple definition, but the Dragalin 
restriction results in a failure of cut elimination.

Counter Example: A !+ (A !� A !+ h�i) !� h+i
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[Goré:2000] gives a display calculus that is a bi-intuitionistic 
logic with cut-elimination.

[Goré et al.:2010] gives a logic using nested sequents which 
is has cut-elimination.

2-Category?

[Pinto and Uustalu:2009-2010] give a labeled sequent 
calculus for bi-intuitionistic logic that has cut-elimination.

Bi-intuitionistic Logic
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Bi-intuitionistic Logic

n 0 62 |G| (G,n 4p n 0);�, p T1 @ n 0 `p
n0 T2

G;� `p
n T1 !p T2

imp

G ` n 4⇤
p̄ n 0 G;� `p̄

n0 T1 G;� `p
n0 T2

G;� `p
n T1 !p̄ T2

impBar
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The Categorical Model
A preordered category is a tuple (P,C,⌦,�, I,T) where P is the base pre-

order, and C has the following data:

 a collection of objects denoted A@w, where w 2 Obj(P)

a collection of morphisms denoted f : M ;A@w ! B@w0

for any preorderM , and objectA@w, there exists a morphism idA@w : M ;A@w !
A@w called the identity morphism

 

 

for any morphisms f : M1;A@w1 ! B@w2, and g : M2;B@w2 ! C@w3, there

exists a morphism f ; g : M1,M2;A@w1 ! C@w3,
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The Categorical Model
A preordered category is a tuple (P,C,⌦,�, I,T) where P is the base pre-

order, and C has the following data:

 

 

 

 

for any morphisms f : M1;A@w1 ! B@w2, and g 2 M1[w2, w3], there exists

the morphism f
t g : M1;A@w1 ! B@w3

for any morphism f : M1;A@w1 ! B@w2, idA@w1 ; f = f , and f ; idB@w2 = f

for any morphisms f : M1;A@w1 ! B@w2, and g 2 M1[w1, w3], there exists

the morphism f
s g : M1;A@w3 ! B@w2

for any morphisms f : M1;A@w1 ! B@w2, and g : M2;B@w2 ! C@w3,

h : M3;C@w3 ! D@w4, f ; (g;h) = (f ; g);h

 all finite products, denoted by ⌦, and coproducts, denoted �
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Conclusion

Key Points:

duality can be exploited to solve interesting problems,

category theory is a powerful tool, 

SBILL is a new ILL with perfect duality with

a categorical model.
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Thank you!
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