Advancing
Pl Based Formal Methods
Research and Education

Harley Eades Il
Computer Science
School of Computer and Cyber Sciences
Augusta University

Who is this guy?

* Ph.D. - Theoretical Computer Science, University of
lowa, 2014

* Thesis: The Semantic Analysis of Advanced
Programming Languages

* Now: Research Faculty at Augusta University

Research Interests

Computational Logic

Foundations of Programming Languages
Software Verification
Interactive/Automated Theorem Proving
Pure and Applied Mathematics

Overall Research Goals

Advance the theory of programming languages
and interactive theorem proving so that it is
more applicable to real-world problems.

Overall Research Goals

Applying the theory of programming languages
and interactive theorem proving to new areas of
computer science.

Threat Analysis
using
Attack Irees

Autonomous
Vehicle Attack

Autonomous
Vehicle Attack

External Sensor
Attack

Over Night Attack

Autonomous
Vehicle Attack

External Sensor

Attack Over Night Attack

Modify Street Signs Social Engineering Find Address of Compromise
to Cause Wreck Attack Cars Location Vehicle

Autonomous
Vehicle Attack

External Sensor
Attack

Over Night Attack

Modify Street Signs Social Engineering
to Cause Wreck Attack

Pose as Mechanic Install Malware Break into Car Install Malware

Find Address of Compromise
Cars Location Vehicle

10

Autonomous

Vehicle Attack

External
Sensor Attack

Over Night
Attack

Find Address of Compromise
Cars Location Vehicle

Modify Street Signs | Social Engineering
to Cause Wreck Attack

Pose as

Install Malware Break into Car | Install Malware

Mechanic

Disable Door
Alarm/Locks

Break Window

11

Autonomous

Vehicle Attack

External Over Night
Sensor Attack Attack

Modify Street Signs | Social Engineering Find Address of Compromise
to Cause Wreck Attack Cars Location Vehicle

G S -

Poseas 1 |nstall Malware Break into Car | Install Malware

Mechanic
Disable Door !

Break Window Alarm/Locks

12

Autonomous

Vehicle Attack

External Over Night
Sensor Attack Attack

Modify Street Signs | Social Engineering Find Address of Compromise
to Cause Wreck Attack Cars Location Vehicle

G S -

Poseas 1 |nstall Malware Break into Car | Install Malware

Mechanic
Disable Door !

Break Window Alarm/Locks

13

Autonomous

Vehicle Attack

External Over Night

Sensor Attack Attack
Modify Street Signs | Social Engineering Find Address of Compromise

to Cause Wreck Attack Cars Location Vehicle

Pose as '
Mechanic

5

Install Malware Break into Car | Install Malware

Disable Door !

Break Window Alarm/Locks

14

Autonomous

Vehicle Attack

External Over Night !

Sensor Attack Attack

Car s (o () <

Modify Street Signs | Social Engineering Find Address of Compromise
to Cause Wreck Attack Cars Location Vehicle

Pose as '
Mechanic

5

Install Malware Break into Car | Install Malware

Disable Door !

Break Window Alarm/Locks

15

Autonomous

Vehicle Attack

External
Sensor Attack

Over Night
Attack

Find Address of Compromise
Cars Location Vehicle

Modify Street Signs | Social Engineering
to Cause Wreck Attack

Pose as

Install Malware Break into Car | Install Malware

Mechanic

Disable Door
Alarm/Locks

Break Window

16

Autonomous

Vehicle Attack

External
Sensor Attack

Modify Street Signs | Social Engineering
to Cause Wreck Attack

Pose as
Mechanic

Over Night
Attack

Find Address of Compromise
Cars Location Vehicle

Break into Car | Install Malware

Install Malware

Disable Door
Alarm/Locks

Break Window

17

Autonomous

Vehicle Attack

External
Sensor Attack

Over Night
Attack

Find Address of Compromise
Cars Location Vehicle

Modify Street Signs | Social Engineering
to Cause Wreck Attack

Install Malware

Pose as Break into Car | Install Malware

Mechanic

Disable Door
Alarm/Locks

Break Window

18

External
Sensor Attack

Modify Street Signs
to Cause Wreck

Pose as
Mechanic

Autonomous

Vehicle Attack

Social Engineering

Attack

Install Malware

Over Night
Attack

Find Address of
Cars Location

Compromise
Vehicle

Break into Car | Install Malware

Disable Door
Alarm/Locks

Break Window

| I Concurrency Operator

Base Attack

\._} Modify Street Signs Find Address of
| to Cause Wreck

Cars Location

Pose as

: Install Malware Install Malware
Mechanic

Disable Door
Alarm/Locks

Break Window

20

A = “Modify Street Signs to Cause Wreck*
B = “Pose as Mechanic®

C' = “Install Malwarc*

1) = “Find Address of Cars Location*
E = “Break Window*

F' = “Disable Door Alarm/Locks*

(A (BoOC)U(D>(FUF)>CO))

21

Attack Trees in Resource-Sensitive

Logics

Resource-Sensitive Logics:

Model Resource Critical Systems as Formulas

Prove Properties about the Modeled Systems
by Proving Properties about Formulas

Understands Concurrency

Formally Controls Duplication of Resources

22

Attack lrees In Resource-
Sensitive Logics

Reasoning about Attack Irees:

* Model Attack Trees as Formulas in Resource-
Sensitive Logics

* Prove Properties about Attack Trees by Proving
Properties about Formulas

* Respects the Concurrency Perspective of
Attack Trees

23

A = “Modify Street Signs to Cause Wreck®
B = “Pose as Mechanic*

C' = “Install Malware*®

D = “Find Address of Cars Location®

FE = “Break Window*“

F = “Disable Door Alarm/Locks*

(A (BoCO)U(D> ((EUF)>C))
= (A B)o (A C) U (D (E>C)U (D (F>C)))

24

Lina: An EDSL for Threat
Analysis

Embedded Domain Specitic Functional Programming
Languages

* Host Language: Haskell
Compositional Attack Tree Specification Language

Automated Reasoning about Attack Irees using
Maude and SMT

Open Source and Available on Github: https://
github.com/MonoidalAttackTrees/Lina

25

https://github.com/MonoidalAttackTrees/Lina
https://github.com/MonoidalAttackTrees/Lina

Lina: An EDSL for Threat
Analysis

import Lina.AttackTree

vehicle_attack :: APAttackTree Double String
vehicle_attack = start_PAT §
or_node "Autonomous Vehicle Attack"
(seq_node "External Sensor Attack"
(base_wa 0.2 "Modify Street Signs to Cause Wreck")
(and_node "Social Engineering Attack"
(base_wa 0.6 "Pose as Mechanic")
(base_wa 0.1 "Install Malware")))
(seq_node "Over Night Attack"
(base_wa 0.05 "Find Address where Car is Stored")
(seg_node "Compromise Vehicle"
(or_node "Break In"
(base_wa 0.8 "Break Window")
(base_wa 0.5 "Disable Door Alarm/Locks"))
(base_wa 0.1 "Install Malware")))

20

Lina: An EDSL for Threat
Analysis

se_attack :: APAttackTree Double String
se_attack = start_PAT §
and_node "social engineering attack"
(base_wa 0.6 "pose as mechanic")
(base_wa 0.1 "install malware")

bi_attack :: APAttackTree Double String
bi_attack = start_PAT $
or_node "break in"
(base_wa 0.8 "break window")
(base_wa 0.5 "disable door alarm/locks")

cv_attack :: APAttackTree Double String
cv_attack = start_PAT $
seq_node "compromise vehicle"
(insert bi_attack)
(base_wa 0.1 "install malware")

es_attack :: APAttackTree Double String
es_attack = start_PAT 3
seq_node "external sensor attack"”
(base_wa 0.2 "modify street signs to cause
wreck")
(insert se_attack)

on_attack :: APAttackTree Double String
on_attack = start_PAT §$
seq_node "overnight attack"
(base_wa 0.05 "Find address where car
is stored")
(insert cv_attack)

vehicle_attack’’ APAttackTree Double String
vehicle_attack’’ = start_PAT §$
or_node "Autonomous Vehicle Attack"
(insert es_attack)
(insert on_attack)

27

Lina: An EDSL for Threat
Analysis

—— Internal Attack Tree
data IAT where

Base :: ID —> IAT
OR »: ID — IAT —> IAT —> IAT
AND :: ID —> IAT —> IAT —> IAT
SEQ :: ID — IAT —> IAT —> IAT

28

Lina: An EDSL for Threat
Analysis

—— Attributed Process Attack Tree

data APAttackTree attribute label = APAttackTree {
process_tree :: IAT,
labels :: B.Bimap label ID,
attributes :: M.Map ID attribute

}

29

Lina: An EDSL for Threat
Analysis

—— Full Attack Tree

data AttackTree attribute label = AttackTree {
ap_tree :: APAttackTree attribute label,
configuration :: Conf attribute

30

Lina: An EDSL for Threat
Analysis

data ConfT attribute

= (Ord attribute) => Conf {

orOp :: attribute —> attribute —> attribute,
andOp :: attribute —> attribute —> attribute,
seqOp :: attribute —> attribute —> attribute

}

31

Lina: An EDSL for Threat
Analysis

—— Full Attack Tree

data AttackTree attribute label = AttackTree {
ap_tree :: APAttackTree attribute label,
configuration :: Conf attribute

32

L ina: An EDSL for Threat
Analysis

* Query Attack Trees for:
 Most Likely Attack
[east Likely Attack
e OSet of all Attacks

* Prove Properties of Attack Trees using Logical
Theory:

e Equivalence of Attack Trees

* Specializations

33

Lina: An EDSL for Threat
Analysis

> :load source/Lina/Examples/VehicleAttack.hs

Ok, meodules loaded
> get_attacks § vehicle AT

34

Lina: An EDSL for Threat
Analysis

SEQ("external sensor attack",0.6)
("modify street signs to cause wreck",0.2)
(AND("social engineering attack",0.6)
("pose as mechanic",0.6)

n s

("install malware",0.1))

SEQ("over night attack",0.8)
("Find address where car is stored",0.05)
(SEQ("compromise vehicle",0.8)
("break window",0.8)
"install malware",0.1))

SEQ("over night attack",0.5)
("Find address where car is stored",0.05)
(SEQ("compromise vehicle",0.5)
("disable decor alarm/locks",0.5)
"install malware",0.1))

35

| INna In the Future

o Attack Trees as Comonads?

* Developing a benchmarking library using random
generation of attack trees via QuickCheck.

36

lakeaways

Attack Trees are used to assess threat of security
critical systems

Attack Trees are process trees.

Attack Trees can be modeled as formulas In
resource-sensitive logics.

Analysis of Attack Trees can be automated using
their logical semantics.

Lina is a functional programming language that
supports this new perspective.

37

Resource-sensitive
Dependent lypes

Joint Work with:
Dominic Orchard and Vilem Liepelt, University of Kent

Resource-sensitive Logics

Resource-Sensitive Logics = Substructural Logics

e [inear, Affine, Contractive, Non-commutative
Logic

Limit how hypothesis (variables) are used to control
resources

» Control structural rules for exchange, weakening
and contraction

39

The Structural Rules

Fl,x:A,y:B,Fgl—t:C

EX
Fl,yIB,CUIA,FQ —t:C

The Structural Rules

Fl,FQI—tZB
['V,x: A 12+1t:B

WEAK

The Structural Rules

[V, x:Ay:ATs+1t: B
[,x: A2+ [x/ylt: B

CONTRACT

Resource-sensitive Logics

o Lambek Calculus = STLC - Ex - Weak - Contract
e Linear Logic = STLC - Weak - Contract

e Affine Logic = STLC - Contract

» Contractive Logic = STLC - Weak

43

Resource-sensitive Logics

* Linear Logic = Lambek Calculus + Ex

o Affine Logic = Linear Logic + Weak

o Contractive Logic = Linear Logic + Contract
« STLC = Linear Logic + Weak + Contract

44

What Types of Resources?

Examples:

 Memory consumption,
o State-based systems,
 [ime complexity, etc.

45

Dependent lypes

V(l1lal3 : ListA) = ((l1++12)++13) = (I1 ++(l2 ++13))

Dependent lypes

* Write programs and prove them correct in the same
language.

e Specifications for programs are sets of
dependent types.

» Writing programs with these dependent types is
equivalent to proving each property in the
specification.

* [ype checking these programs machine checks
your proofs.

47

Dependent lypes

Not resource sensitive; has all of the structural rules!

48

Resource-sSensitive
Dependent lypes

Generalize Linear Logic to a Dependent-Type System

49

Fasier said than done!

50

id: (A:Type) > (z:A) - A
dAzx =x

Resource-sSensitive
Dependent lypes

Naive linear dependent type theory is unusable.

52

Resource-sSensitive
Dependent lypes

We need an mechanism to relax the
system when we want.

53

Resource-sSensitive
Dependent lypes

Our Solution:

Naive Linear Dependent Type Theory
|

Graded Modalities

o4

Resource-sSensitive
Dependent lypes

Graded Modalities: programmer precisely
controls the usage of variables.

95

id: (A:Type) > (z:A) - A
dAzx =x

d: (|A] Type[2:0]) > (z: AJ0: 1[) » 4
idAl|x| =x

S/

(-Type Level Usage
id: (|A]: Type|2:0[) - (z: A|0:1]) -
IdA‘CBl B &—Program Level Usage

58

Education

Overall Education GGoals

Incorporating formal-methods reasoning
principles and technigues into the primary -
university CS education.

60

Overall Education GGoals

Exploiting formal-methods research to develop
new education tools to make learning and
teaching easier for students and educators
respectively.

61

The Pull CS Back
Nnitiative

The Pull CS Back Initiative

The goal is to assistant CS primary school through secondary
school educators with little CS background incorporate CS
topics into their curriculum.

63

The Pull CS Back Initiative

Masters Degree:

» Broadly introduce educators to CS topics and
its pedagogy.

» Fast: One year

» Collaboration between CS department and
college of education.

64

The Pull CS Back Initiative

Pullback Seminar:

* An inclusive environment anyone can
participate in to learn about CS education

topics.
* Open to the public

e Freel

* A way for non-university educators to keep
learning about CS.

65

Education lools

Disco Lang

A language designed to bring
functional programming and
formal methods into discrete
mathematics.

Syntax must be based on prior
mathematical knowledge.

Good errors messages are
extremely important.

Joint work with Brent Yorgey,
Hendrix College.

67

implication

B-—>B —>B

implication x y =

{? false

?}

true

if x and not vy,
otherwise

Haskell QuickGrader

 An auto grader for Haskell assignments.
e Grading is done using the QuickCheck library.
* |ncorporated into a Gitlab server.

e Students just push on solution branch to

trigger grading, and report is generated and
oushed back.

68

