Graded Modal Types
: *ategorv

Harley Eades llI
School of Computer and Cyber Sciences
Augusta University

Granule Project

Team Augusta Team Kent
 Harley Eades Ill (Pl) e Dominic Orchard (Pl)
 Aubrey Bryant (PhD Student) e Ben Moon (PhD Student)

e Jack Hughes (PhD Student)

. ' University of

AUGUSTA Kent

UNIVERSITY

Graded Monads & Effects

Monadic Effects

e State

e Exceptions

e Continuations

e Partiality

e Non-termination
eErrors

e Non-determinism
e Input/Output

Effect Systems

e State

e Exceptions

e Continuations

e Partiality

e Non-termination
eErrors

e Non-determinism
e Input/Output

.
i‘

‘Strict
Languages.

Combined
effect systems and
monads.

Parametric Effect and Indexed Monads
are now called Graded Monads.

So, what's a graded monad?

monoids
So, what's a graded mc¢ ad?

AMONAD/ISJUST(AIMONOID/IN\THE
GATEGUIIY IIF ENIIIIHINOT(IBS

ﬁw \ |
WHATS THE‘PR“B[EM”

10

Monoids in Sets

M :1 — Set n: T ->M
u.- MM - M

11

Monoids in ¢
M:1->% n: T ->M
u.- MM - M

12

Monoids in &

n: 1 - M

u.- MM - M

13

Monoid-Graded Monoids in €

(E,0,+) n: 1 — M
M:E—> € /’tel,ez : Mel & M€2 — Mel+ez

14

Monoid-Graded Monoids in €

M:E—> € /’tel,ez : Mel & M€2 — Mel+ez

Commutative-additive monoid

15

Monoid-Graded Monoids in €

(E,0,+) n: 1 — M,
M ES@) oM, ®M, — M,

11T€

E-indexed family of objects in &

16

Monoid-Graded Monoids in €

M:E—-> € /’tel,ez M ®M _)M1+€2

A monoidal unit

17

Monoid-Graded Monoids in €

(E,O0,+)
M:E —> %

A monoidal multiplication

18

Monoid-Graded Monoids in €

(E,0,+) n: 1 — M
M:E—> € /’tel,ez : Mel & M€2 — Mel+ez

19

I

‘objects from one monoidal category to the
'another such that their tensor products are
elated in a lax or colax manner.

20

‘Graded modalities are indexed-families of

ji
«
i
|
|

Monoids in ¢
M:1->% n: T ->M
u.- MM - M

21

Monads

M:1-—- [€,6] n:Ild->M
//tIMoM—>M

22

Monoid-Graded Monads

M:E — [%, %] /’tel,ez : Mel ° M€2 — M€1+€2

23

Graded Monads
E, T,®) n:1d - M-

M:E — [Cg, c“g] //tel,ez : Mel © M€2 — Mel®ez

24

Example : Environment Monad

My : 1 — [Set, Set] Ny A = MyA
Mx(A)=X=>A py: MyMyA — MyA

25

Example : Environment Monad

M,y : 1 — [Set, Set]

MyA) =X = A

20

Example : Environment Monad

271

Example : Powerset Monoid
PX):1->S8Set @: T - PX)

U: PX)Q PX) - P(X)

28

Example : Graded Environment Monad

- P(E) — [Set, Set]

MyA) =X= A

>>=: M A — (A - MyB) - My B

29

Towards a Formal Theory of Graded Monads

Abstract. We s B ST R A i N
pose is to adapt O - | /; \\ B

: & articular that every graded

: 7 I | a strict action transported
along a left adjo Sue what sense the first con-
struction genera BESSMEER < BN SRR\ ction while the second
construction ger/ R B B ion. Finally, we illustrate
the Eilenberg-Moore construction on the graded state monad induced
by any object V' in a symmetric monoidal closed category % .

30

Typing for Graded Monads
Given: (E, T ,®, <)

Iy <1’
I'Et:B A<B T +t:A

Tk (t):M:B ' Ty Ft: B

<

F2|_t11M€1A F1,$2A|_t22M62B

[, Ty F let(z) = tinty: Mo, 9, B

3

Graded Comonads & Data Usage

32

Data as a Resource

*File handles

e Communication channels (session typing)
e Secure data

* Memory usage

* Time complexity

* Ordered data

33

Data as a Resource

*File handles

e Communication channels (session typing)
e Secure data I
* Memory usage 'Misusing data can z
* Time complexity lead to various bugs. |
e Ordered data e

34

Intuitionistic Linear Logic

Supports the following data-usage constraints:
e Linear usage (one)

e Affine usage (one or none)
 Non-linear usage (tons)

35

Intuitionistic Linear Logic
[, A 1A T F B
r,!A, T+ B

30

Intuitionistic Linear Logic

Supports the following data-usage constraints:

e Linear usage (one)

e Affine usage (one or none)
m bet

 Non-linear usage (tons)

LS

What about the spectr ween

none and tons?

37

Bounded Linear Logic

Supports the following data-usage constraints:
°* hone to tons

Time complexity!

38

(Simplified) Bounded Linear Logic

[y,0, AL, ATy F B
L.l 2 A To B

39

(Simplified) Bounded Linear Logic

40

Bounded Linear Logic in a Semiring

e Data-usage annotations are from a semiring

e Externally graded: no modality, all hypothesis
are give a grade

41

Bounded Linear Logic in a Semiring

Given: (R,1, *,0,+)

Fl,le_B W Fl,A@Tl,A@TQ,FQFBC
F17A®O7F2|_B Fl,A@(T1+T2),F2|_B

42

Graded comonads generalize the
'modality in bounded linear logic to use
bounded semiring data-usage

|

43

Graded Comonads

Supports the following data- usage.constralnts

e Linear usage (one)
» Affine usage (one or none)
e Non-linear usage (tons) '
 None to tons

* Privacy

 Time complexity
e Session typing

44

Graded Comonads

I.Iy - B
B B

r,0,A4,0,,A,5F B

ry,0, ., ATy F B

DAFB
I O,AF B

45

Graded Comonads

I, H0,.A OI'+ B
M,Aor+ B — P

T, B .p*x1'-U,B

46

47

Category-Graded Monads

48

Parameterised Monads

Monads parameterised by pre and
post conditions:

n:A— P, 1A

u: P,)P, K)A — P(I,K)A

49

|

|

'Can graded monads and parameterised
| monads be unified?

50

Category-Graded Monads

Grades are morphisms in a category:

n:A—[ly A
- DngA = Df;gA

51

Category-Graded Monads

‘Subsumeboth gradedmnds and
'parameterlsed monads. |

D. Orchard, P. Wadler, H. Eades lll. "Unifying graded and
parameterised monads". Under review MSFP 2020.

Preprint: https://arxiv.org/abs/2001.10274

52

https://arxiv.org/abs/2001.10274

Graded Type Theory

53

Graded Modal Types

Linear Base

Graded Modalities

54

Graded Type Theory

o5

Why Dependent Types?

* Practical programming with graded modalities
requires dependency.

e Extrinsic verification.

56

Why Dependent Types?

map : forall {a : Type, b : Type}
(a => b) []
-> List a
-> List b
map [f] Empty = Empty;
map [f] (Cons x xs) = Cons (f x) (map [f] xs)

of

Why Dependent Types?

map : forall {a : Type, b : Type, (n : Nat})

map tf]EmptyAEﬁpty;
map [f] (Cons x xs) = Cons (f x) (map [f] xs)

58

Graded Type Theory

59

Linear Dependent Types

Long standing open problem!

Dependent
Linear Base

60

Linear Dependent Types

Non-Linear Dependent Type Theory:
In types

S~ .

', x:A,l,Ht:B
N

In the
subject

o1

How should inputs be managed?

if I = B : Type, then
In types ?

A~ .

', x:A,l,Ht:B
N

Linear in the
subject

62

How should inputs be managed?

/

', x:A,l,Ht:B
N

In the
subject ?

63

How should inputs be managed?

* (McBride & Atkey) Quantitat Theory (QTT):

\

. Specificational free—"o _~nhon-linear
* Compu*~ . ables are linear

* (Luo & Zh 10} A Lmear Dependent Type Theory

* Use a weaker notion of linearity, but not fully non-
inear

o4

How should inputs be managed?

I

Dream : Users tto decide wthir data is w

| managed in both computations and
specifications. e

65

Linear Everywhere Dependent Type
Theory (LEDTT)

60

Linear Everywhere Dependent Type
Theory (LEDTT)

Every variable must be used:
Let '~ t: B. For every x : A € I' then either x € FV(I') or

r € FV(t) orx € FV(B).

Linearity across judgments:

Let '~ t¢:B. For every x : A € I' then x appears only once

in I, or only once 1n ¢, or only once 1n B.

o/

Linear Everywhere Dependent Type
Theory (LEDTT)

Variable localization:

Let '+ t:B. For every z: A €I then the following holds:
o If x € FV(I'), then x ¢ FV ()

o If x € FV(t), then x ¢ FV(I")

68

Linear Everywhere Dependent Type
Theory (LEDTT)

~— s

- ad
S

| Key Concept: Usabiti&j of depemdem& types requires the
| abiii&v to mix non-dependent types with dependent

= —
=

= types, buk Linearity prevents the former leading to an

| unusable system.

\
\
\

N\
\,,

— . _ e _— - — —

69

Linear Everywhere Dependent Type
Theory (LEDTT)

Trivialization:

If & - ¢t : A, then ¢ is Type;, and A is Type, for

some /1 and [where [1 < [5.

70

I
|
I

,LELDTTr'nust be relaxed in order to g
M“GSS of dependent types |

Ia

Key idea: Double the grades

Graded Comonads:

'y x: A l,Ft:B
~_

(2

Key idea: Double the grades

AN

Fl,x:wt:B

where A : Vars, = < is called a usage map.

/3

Key idea: Double the grades

s

[,x:2 A,y :Bx),z: Cx) - 1: D(x)
where \

A={y—4,z7—>42,¢ > 2}

74

Example : Polymorphic Identity Function

DHFAa.Ax.x:(a:Type) - (x:a) —a

75

Example : Polymorphic Identity Function

D Alal . Alx].x: (a :(2) Type) — (x :(1) a) — a

/0

Graded Type Theory (GrDTT)

| ———— |
, |

GrTT = LEDTT Types|

H. Eades lll, B. Moon, and D. Orchard. "Graded Type Theory."
Under review at LICS 2020.

I

Demo Time!

DMENTALI IT!I

/8

Granule Design and Meta-theory

D. Orchard, V. Liepelt, H. Eades lil.

"Quantitative Program Reasoning with Graded Modal Types."
In ICFP 2019.

PDF: http://metatheorem.org/includes/pubs/ICFP19.pdf

79

http://metatheorem.org/includes/pubs/ICFP19.pdf

Thank you!

Contacts:

Twitter: @heades

Email: harley.eades@gmail.com
Blog: blog.metatheorem.org

https://granule-project.github.io/

‘,‘m B e — —,‘
==~ Download & Install Granule |

30

mailto:harley.eades@gmail.com
http://blog.metatheorem.org
https://granule-project.github.io/

Backup Slides

31

