Core Design Concepts Discussed:

Names, Functions, and
Types

Harley Eades Il

Programming Language Varieties

* Imperative Programming: State-based instructions
* Declarative Programming: Describe what a computation should perform.

* Functional Programming: Function-based programs.

* Object-Oriented Programming: Programs are organized into classes and

objects.

The Core Design Concepts

e Conceptual Model allowing humans to reason and construct programs.
e Syntax for expressing computation.
e Analysis for discovering bugs in syntactically-valid programs.

* Evaluator for running syntactically-valid programs.

A Spectrum of Change

While we have this notion of core-design concepts, programming languages change over time.

Just consider languages supporting functional programming.

Functional Programming Adoption Timeline

e 1930s: The lambda-calculus discovered by Alonzo Church.

 1930s: Proved Turing Complete by Alan Turing in this paper introducing Turing Machines.
e 1950s: First high-level programming language called LISP developed by John McCarthy.
® 1960s: First abstract machines was developed.

e 1970s: ML was created by Robin Milner.

e 1980s: Miranda the first lazy language as developed by David Turner.

e 1980s: Haskell and its open standard for functional languages began.

e 1990s: Haskell implementations take off starting in 1992.

 1990s: Standard ML is defined and implemented.
e 1990s: OCaml begins at Inria.
e 2000s: Functional programming enters the mainstream:
e 2005-2007: C# 2.0 and 3.0
e 2009: PHP 5.3 and 5.4
e 2009: Python
o 2011: C++11
e 2014: Java 8
e 2014: Apple's Swift
e 2015: Javascript (ES6)

Building on top of the Core

Programming languages begin with a:
* core conceptual model and a

¢ core set of features.

Building on top of the Core

Then more features are added on top of this core design striving to
make the language:

* More usable.
* More powerful.

e More correct.

Building on top of the Core

As an example, consider Javascript:
e Core design: object-oriented first.
e Conceptual model: Everything is an obiject.
e Even functions are objects with fields and method:s.

A4

Core Design Concepts:

Names

Let Bindings: Variables in OCaml

REPL variable declaration:
let x = e;;

Names
Let Bindings: Variables in OCaml

name

let x =

e

N

Names
Let Bindings: Variables in OCaml

name expression

' '

let x = e;;

Core Design Concepts:

Names

let x = e

* % is an immutable variable.
% is an alias for e.
e everywhere x is used it will be literally replaced with e at run time.

e immutability makes it easier to reason about the correctness of our
programs, and results in more correct programs, because we do not need
to manage any type of reference or state.

Core Design Concepts:

Names

Let Bindings: Variables in OCaml

42

let X

N
N

Names
Let Bindings: Variables in OCaml

let x = 42

val X : 1nt = 42

T

type of x

Core Design Concepts:

Names

Let Bindings: Variables in OCaml

let x = 42::
4 2

val x ¢ 1nt

Analysis: At compile time, before a program is evaluated, it is type checked.
This process attempts to examine the structure of the program and make sure that

the program can be given a type that makes sense.

Core Design Concepts:

Type Systems

OCaml is an example of a static type system:

"use the structure of the program to verity its type at compile time"
much like C#, Java, Swift, and Typescript.

This is different from dynamic typing:

"verify the type of a program at run time"

which is used by languages like Python.

Technically, C# is a gradual type system which combines both static and

dynamic typing.
More on type systems
in a later lecture.

Core Design Concepts:

Names

Let Bindings: Variables in OCaml

At runtime, x will be replaced with e.

This process is known as substitution.

More on substitution
in a later lecture.

Names
Let Bindings: Variables in OCaml

let x =

val X : 1nt =

Core Design Concepts:

Functions

Let Bindings: Basic Functions in OCaml

let £ x = e

N
N

Functions

Let Bindings: Basic Functions in OCaml

function
name

l
let £ x = e;;

Functions

Let Bindings: Basic Functions in OCaml

function
name

|
let £ ?{ = e::

argument

Functions

Let Bindings: Basic Functions in OCaml

function function
name body
' '
let £ ?{ = €5

argument

Core Design Concepts:

Functions

Let Bindings: Basic Functions in OCaml

let dt X (X + 2) * 3;

N

Functions

Let Bindings: Basic Functions in OCaml

let dt x =

val dt

int

Core Design Concepts:

(x + 2) * 3;;

-> 1nt

function type

<fun>

Core Design Concepts:

Function Types

a -> b * Arguments of function types are
4 4 separated by an arrow.
argument body
type type * The last type, on the right, is the type of

the body of the function.

Core Design Concepts:

Function Types

a —-> b => C * Arguments of function types are
4 4 4 separated by an arrow.
1 st 2nd body : :
argument argument type *The last type, on the right, is the type of

type type the body of the function.

Function Types

a -> (b -> c)

Core Design Concepts:

Conceptual

The arrow type is right associative.

More on the last type
in a future lecture.

Core Design Concepts:

Function Types

a -> b =-> cC
o C#:

Func<a,Func<b,c>>

eSwift:
(namel: a) -> (name2: b) -> c

eTypescript (Javascript):
(namel: a) => (name2: b) => cC

Core Design Concepts:

Functions

Let Bindings: Basic Functions in OCaml

let dt x = (x + 2) * 3;;
val dt : i1nt -> int = <fun>

dt 42;:

Core Design Concepts:

Functions

Let Bindings: Basic Functions in OCaml

let dt x = (x + 2) * 3;;
val dt : i1nt -> int = <fun>

#,dt 42

function
application

Core Design Concepts:

Functions Application

Arguments to a function are separated
by spaces.

f ab ... cC

1 1

function arguments

Core Design Concepts:

Functions Application

Arguments to a function are separated
by spaces.

f ab...cC

Other styles of syntax:

o Cstyle:
f(a, b, ..., C)

* Named Parameters (Swift):
f (namel: a, name2: b, ..., nameli: c)

Core Design Concepts:

Functions Application

Application is left associative:

((f a) b) ...) cC
= f ab ... cC

Function application will
be discussed more in a
later lecture.

Core Design Concepts:

Functions

Let Bindings: Basic Functions in OCaml

let dt x = (X + 2) * 3;;
val dt : int -> int = <fun>
dt 42:;

- : 1nt = 132

