
Names, Functions, and
Types

Harley Eades III

Conceptual
Models

Core Design Concepts Discussed:

Syntax Analysis Evaluation

Programming Language Varieties

•Imperative Programming: State-based instructions

•Declarative Programming: Describe what a computation should perform.

•Functional Programming: Function-based programs.

•Object-Oriented Programming: Programs are organized into classes and
objects.

The Core Design Concepts

•Conceptual Model allowing humans to reason and construct programs.

•Syntax for expressing computation.

•Analysis for discovering bugs in syntactically-valid programs.

•Evaluator for running syntactically-valid programs.

A Spectrum of Change

While we have this notion of core-design concepts, programming languages change over time.

Just consider languages supporting functional programming.

Functional Programming Adoption Timeline
• 1930s: The lambda-calculus discovered by Alonzo Church.

• 1930s: Proved Turing Complete by Alan Turing in this paper introducing Turing Machines.

• 1950s: First high-level programming language called LISP developed by John McCarthy.

• 1960s: First abstract machines was developed.

• 1970s: ML was created by Robin Milner.

• 1980s: Miranda the first lazy language as developed by David Turner.

• 1980s: Haskell and its open standard for functional languages began.

• 1990s: Haskell implementations take off starting in 1992.

• 1990s: Standard ML is defined and implemented.

• 1990s: OCaml begins at Inria.

• 2000s: Functional programming enters the mainstream:

• 2005-2007: C# 2.0 and 3.0

• 2009: PHP 5.3 and 5.4

• 2009: Python

• 2011: C++11

• 2014: Java 8

• 2014: Apple's Swift

• 2015: Javascript (ES6)

Building on top of the Core

Programming languages begin with a:

•core conceptual model and a

•core set of features.

Building on top of the Core

Then more features are added on top of this core design striving to
make the language:

•More usable.

•More powerful.

•More correct.

Building on top of the Core

As an example, consider Javascript:

•Core design: object-oriented first.

•Conceptual model: Everything is an object.

•Even functions are objects with fields and methods.

•🤯

Names
Let Bindings: Variables in OCaml

let x = e;;

Syntax

Core Design Concepts:

REPL variable declaration:

Names
Let Bindings: Variables in OCaml

let x = e;;

name

Names
Let Bindings: Variables in OCaml

let x = e;;

name expression

Names

let x = e;;
•x is an immutable variable.

•x is an alias for e.

•everywhere x is used it will be literally replaced with e at run time.

•immutability makes it easier to reason about the correctness of our
programs, and results in more correct programs, because we do not need
to manage any type of reference or state.

Analysis

Core Design Concepts:

Names
Let Bindings: Variables in OCaml

let x = 42;;

Evaluation

Core Design Concepts:

Names
Let Bindings: Variables in OCaml

let x = 42;;

val x : int = 42
type of x

Names
Let Bindings: Variables in OCaml

let x = 42;;

val x : int = 42

Analysis: At compile time, before a program is evaluated, it is type checked.

This process attempts to examine the structure of the program and make sure that

the program can be given a type that makes sense.

Analysis

Core Design Concepts:

Type Systems
OCaml is an example of a static type system:

"use the structure of the program to verify its type at compile time"

much like C#, Java, Swift, and Typescript.

This is different from dynamic typing:

"verify the type of a program at run time"

which is used by languages like Python.

Technically, C# is a gradual type system which combines both static and
dynamic typing.

Analysis

Core Design Concepts:

More on type systems
in a later lecture.

Names
Let Bindings: Variables in OCaml

let x = 42;;

val x : int = 42

(x + 2) * 3;;
At runtime, x will be replaced with e.

This process is known as substitution.

Evaluation

Core Design Concepts:

More on substitution
in a later lecture.

Names
Let Bindings: Variables in OCaml

let x = 42;;

val x : int = 42

(x + 2) * 3;;

- : int = 132

Functions
Let Bindings: Basic Functions in OCaml

let f x = e;;

Syntax

Core Design Concepts:

Functions
Let Bindings: Basic Functions in OCaml

let f x = e;;

function
name

Functions
Let Bindings: Basic Functions in OCaml

let f x = e;;

function
name

argument

Functions
Let Bindings: Basic Functions in OCaml

let f x = e;;

function
name

argument

function
body

Functions
Let Bindings: Basic Functions in OCaml

let dt x = (x + 2) * 3;;

Evaluation

Core Design Concepts:

Functions
Let Bindings: Basic Functions in OCaml

let dt x = (x + 2) * 3;;

val dt : int -> int = <fun>
function type

Evaluation

Core Design Concepts:

Function Types

a -> b
argument

type
body
type

•Arguments of function types are
separated by an arrow.

•The last type, on the right, is the type of
the body of the function.

Syntax

Core Design Concepts:

Function Types
a -> b -> c
1st

argument
type

body
type

•Arguments of function types are
separated by an arrow.

•The last type, on the right, is the type of
the body of the function.

2nd
argument

type

Syntax

Core Design Concepts:

Function Types

 a -> (b -> c)

= a -> b -> c

 (a -> b) -> c≠ The arrow type is right associative.

More on the last type
in a future lecture.

Conceptual
Model

Core Design Concepts:

Function Types
a -> b -> c

•C#:  
 Func<a,Func<b,c>>

•Swift:  
 (name1: a) -> (name2: b) -> c

•Typescript (Javascript):  
 (name1: a) => (name2: b) => c

Syntax

Core Design Concepts:

Functions
Let Bindings: Basic Functions in OCaml

let dt x = (x + 2) * 3;;

val dt : int -> int = <fun>

dt 42;;

Evaluation

Core Design Concepts:

Functions
Let Bindings: Basic Functions in OCaml

let dt x = (x + 2) * 3;;

val dt : int -> int = <fun>

dt 42;;
function

application

Evaluation

Core Design Concepts:

Functions Application Syntax

Core Design Concepts:

f a b ... c

Arguments to a function are separated
by spaces.

argumentsfunction

Functions Application Syntax

Core Design Concepts:

f a b ... c

Arguments to a function are separated
by spaces.

•C-style:  
 f(a, b, ..., c)

•Named Parameters (Swift):
 f(name1: a, name2: b, ..., namei: c)

Other styles of syntax:

Functions Application Conceptual
Model

Core Design Concepts:

 ((f a) b) ...) c

= f a b ... c

Application is left associative:

Function application will
be discussed more in a
later lecture.

Functions
Let Bindings: Basic Functions in OCaml

let dt x = (x + 2) * 3;;

val dt : int -> int = <fun>

dt 42;;

- : int = 132

Evaluation

Core Design Concepts:

