Core Design Concepts Discussed:

Abstract Syntax

An internal representation of concrete syntax

Harley Eades llI

So far we have learned about concrete syntax and their definition using context-free grammars and inductive definitions. Now we switch to another representation called
abstract syntax...

Core Design Concepts:

Concrete Syntax

b— x| T|F|ifbthenbelseb | funx {b} | b®) | (b)

Concrete(b;) Concrete(b,) Concrete(bs) Concrete(b;) Concrete(b,) A
Concrete(x) Concrete(if b, then b, else by) ' Concrete(b,(b,)) PP
— 7T Concrete(b) Concrete(b)
Concrete(T) Concrete(funx {b}) Fun Concrete((b)) aren

Concrete(F)

funx { ifxthenFelse T}

Recall that we define concrete syntax, the user-interface to a programming language, using a grammar, but this grammar can equally be defined using an inductive
definition. Here | define the grammar for our boolean language using a judgment called Concrete, and inference rules stating that which syntax is valid concrete syntax.
Finally, we have an example of concrete syntax which is the compliment function we defined during class. Concrete syntax is an external facing interface, but it is not
super convenient to use to write algorithms or write proofs. One thing that gets tedious is keep track of variable scope...

Core Design Concepts:

Concrete Syntax

funx {(funy {b })(b,)}

b, Ab,V b,

Consider this example. We, as humans, can see that x can be used in both b_1 and b_2, but y can only be use in b_1 and not in b_2. Another example is order of
operations, in the concrete syntax this is hard to see. For example, the second program implicitly uses order of operations. Keeping track of all this in a program or proof
is very tedious. For this reason, we translate concrete syntax into a new representation called abstract syntax. The goal of abstract syntax is...

Abstract Syntax

away extraneous details.

Core Design Concepts:

Make writing algorithms and proofs easier by abstracting

make it easier to write algorithms and proofs by abstracting away details in the concrete syntax that are difficult to process.

Core Design Concepts:

Abstract Syntax

May be harder to read and write by humans.

Even though abstract syntax is easier to process, the representation is designed for machines, and may be both harder to read and harder to write by humans. Let's
consider an example...

Core Design Concepts:

Abstract Syntax

b - T | F | if(bl,bz, b3)

Abstract(b;) Abstract(b,) Abstract(b;)
Abstract(T) Abstract(if(b,, by, bs))

——F
Abstract(F)

Here we have a grammar and judgment for abstract syntax of our boolean language. We will add functions soon. The major difference is that if becomes a prefix
operator. This may seem very small, but it has one big advantage, we no longer need parens as part of our syntactic category. So we have gotten simpler. So how do we
add functions?

Core Design Concepts:

Abstract Syntax

b — T |F|if(by, by, by) | fun(x, b) | app(by, by)

Abstract(b;) Abstract(b,) Abstract(b;) | Abstract(b,) Abstract(b,) .
ar -
Abstract(x) Abstract(if(b,, by, b3)) Abstract(app(b,. by) op
S —
Abstract(T) Abstract(b) Fon

Abstract(fun(x, b))

—_F
Abstract(F)

We add functions by adding two new terms for functions and application which are both prefix operators. Functions have two parameters: the variable being bound by
the function and the body of the function. However, the scoping issue we saw before is less complex, because of the style of abstract syntax....

Core Design Concepts:

Abstract Syntax

b — T |F|if(by, by, by) | fun(x, b) | app(by, by)

Abstract(b;) Abstract(b,) Abstract(b;) | Abstract(b,) Abstract(b,) .
ar -
Abstract(x) Abstract(if(b,, by, b3)) Abstract(app(b,. by) op
S —
Abstract(T) Abstract(b) Fon

Abstract(fun(x, b))

—_F
Abstract(F)

funx {(funy {b,})(b,)} — fun(x, app(fun(y, b)), b,)

We can see that the scope of x is exactly the entire application, but the score of y is exactly b_1 and nothing more. Prefix operators make it very easy to understand the
structure of a program. How about order of operations?

Core Design Concepts:

Abstract Syntax

b — T |F|if(by, by, by) | fun(x, b) | app(by, by)

Abstract(b;) Abstract(b,) Abstract(b;) | Abstract(b,) Abstract(b,) .
ar -
Abstract(x) Abstract(if(b,, by, b3)) Abstract(app(b,. by) op
S —
Abstract(T) Abstract(b) Fon

Abstract(fun(x, b))

—_F
Abstract(F)

bl A b2 \% b3 - Or(And(bl, bz), b3)

The abstract syntax translations removes the ambiguity, because prefix operators are fully parenthesized. Every programming language translates their concrete syntax
into an abstract syntax similar to what we have shown here. Now we can fully define what parsing, pretty printing or unparsing is....

Core Design Concepts:

Static Semantics

® Parsing: Translating concrete syntax into abstract syntax.

® Pretty printing (unparsing): Translating abstract syntax into concrete syntax.

parsing is the translation of concrete syntax into abstract syntax. One property that must be true is that for every concrete program there is exactly one abstract program.
That is, the grammar for the concrete syntax cannot be ambiguous. However, for any abstract program there are LOTs of concrete programs. This is because, we can
take a lot of liberties with formatting our concrete programs. Thus, this translation is indeed ambiguous.

