Object-Oriented Programming

Harley Eades il



Programming Language

Syntax (CFQG)

Typing Rules

Statics

Parsing

Dynamics

Evaluation Rules

Evaluation

Value



Part 1: Base System



Patterns

p =X
)
T
0

|
|
| F
|
|

succ(x)

Nats

n:=0
| succ(n)

[

Base Syntax

Terms Values
— Yy .=

| F | F
| O | funx : T — {¢}
| succ(?) | ()
| X | n
| funx : T — {1}
| 1 1
| ()

| matcht{ | p, =1 | ...

| p; — 1}

Types

T ::= Bool

| Nat

| O
| 77 — T,



Statics: Bools

T

[Ft:Bool Th6,:T Thg:T ['F T : Bool

['Fmatcht{ | T—->6|F->15}:T ['+~F : Bool



Statics: Nats

[+ ¢: Nat
[+ 0O: Nat " succ(?) : Nat

UCC

["F7: Nat I'F2#,:T I,x:Natk#:T
['Fmatchs{ |0 = |succ(x) = £} : T

matchNat



Statics: Functions

I,x: T, F1t:7,
'yyx: Tl -x:T ) I'Efunx: T, - {t}: T, = T, :
' : T, -1, T'Ht: T I'=¢4:7, Ll,x:1T,Ft:1T,

't : T, ['Fmatchty { |x = 86,}: T



Statics: Unit

_ I'F1t#:() 't :T
r-0:0 CFmatcht, {|O = 6} : T



Call-by-Value Dynamics: Match

tp

matchv{ | x — ¢t} ~ [v/x]t Ie matchT{ | T =t |F = 5} ~ 1 ’

unitp

matchO){ | () —»> ¢t} = ¢ matChF{‘T—>t1‘|:—>t2}~"l‘2i%

natg,

matchO{ | 0 — 7, | succ(x) = 1,} ~ 1,

match succ(n){ | 0 = ¢, | succ(x) = t,} ~ [n/x]t, .



Call-by-Value Dynamics: Match

t~t
match ¢ { ‘pl — I ... |pl.—>tl.} ~ match ¢’ { \pl — 1 ... ‘pi—>ti}

match



Call-by-Value Dynamics: Functions

/
tl —~ tl .

hlh, ~ 1L

o f! (funx : T — {t}H)v ~ [v/x]t '
2 2

/
Vl tz ~ Vl t2



Part 2:Unit



Example: Side Effects

['Ft: String
I'F printz: ()

Print

Outputting a string to the screen doesn’t return a
value, and so we can model this by returning the unit.



Statics: Unit

't : () I'Et,: T

Unit

CFQO:0 CFmatcht{ |0 =86} :T



Sequencing

CHt,:(0 Thk4:T letr = ref 7

Tt T r .= succ(!r); !r
# 8 . Nat



Sequencing

CHt,:(0 Thk4:T letr = ref 7

Tt T r .= succ(!r); !r

t;;t, =matcht, { | ) — 1.} #8 : Nat

Sequencing is match!



Call-by-Value Dynamics:

Unitfp

match Of | () = 5} ~ &

matcht, { | ) = 1} ~ match?/ { | () = t,}

tch



Part 3:Pairs



New Syntactic Forms: Adding Pairs

Terms Values

[ = Vo=
| F | F

| £.2




Example Programs

lettwist = funp : (Bool, Bool) — {(p.2,p.1)}
intwist (T, F)

let second = funp : (Bool — Bool, Bool) — {ifp.2thenp.1 T else F}
in second (funx : Bool — {ifxthenFelseT}, T)



Statics: Bools

't :Bool ThH6:T Thkt:T T~ T:Bool |

[ ifz thenselsezs - T ” .
Ththent, elsels T - F : Bool



Statics: Functions

I,x: T, F1t:7,
'yyx: Tl -x:T ) FI—funx:Tl—>{t}:T1—>T2Fun

'y T, -1, T'Hit:T I'=¢4:7, Ll,x:1T,Ft:1T,

et



Statics: Pairs

I'E1:(1,75)
r'+¢4:7, Thkt:T, Crel:T,

Pair

| (tl’ t2) . (Tl’ TZ) k¢ (Tla T2)
I'F12: 7,

Irst

Second



Call-by-Value Dynamics: Bools

IfT

f ~ 1 If Tthent,elset; ~ 1,

If t,thent, else t; ~ If t;then 1, else £; I ——
|f F then tz else tg ~ tg



Call-by-Value Dynamics: Functions

t, ~
1 1, App1 -
L I, = 11 I letx =vint ~= |v/x]|t
I, ~ t-
2—2,App2 —_— s -8k ! —
Vil Vi (funx: T — {t}H)v ~= [v/x]t

Let

letx =1t Int, =~ letx =1 Int,



Call-by-Value Dynamics:

L~ 1 , t ~
(11, 1) ~ (1, 1) t.1 ~= ¢t 1
b, ~ 1 t ~ 1

(Vla t2) ~ (Vla té) t.2 ~=t'.2

Proj1

Proj2

(vi, V).l ~ v,

(Vi,V)).2 ~ v,

Pairf,

Pairf,



Part 4:Tuples



New Syntactic Forms: Adding Tuples
Terms

Values
[ .= e
| F % ..—‘ J
} If ¢, then ¢, else 1, funx T — {1)
X
| funx : T — {t} RUTERSN
| 1 1,
| (¢4, ..., 1)

‘ matCh tl{(xl, ...,Xl-) —> tz}

Types
T ::= Bool
| (T4, ..., T
| 7, — T,



Example: Tuple

(T, F, T, F, F) fun(p : (Bool, Bool, Bool)) — {
match p {

(X, ¥,2) = ifx
thenify
then z

else False
else False



Statics: Bools

't :Bool ThH6:T Thkt:T T~ T:Bool |

[ ifz thenselsezs - T ” .
Ththent, elsels T - F : Bool



Statics: Functions

I,x: T, F1t:7,
'yyx: Tl -x:T ) I'Efunx: T, - {t}: T, = T, :
' : T, -1, T'Ht: T I'=¢:7, L,x:T,F1t:71,

I'E1t,: T, I'Hletx=1¢1nt,: T



Statics: Tuples

'k :T) .-« 't T,
CF(y,..0t): (Ty, .. Ty
I'Ee¢ . (T1,....,T.) Loxy: Ty, ...x;: T, =t T
' matcht {(x),...,x) = t,} : T

Match



Call-by-Value Dynamics: Bools

IfT

f ~ 1 If Tthent,elset; ~ 1,

If t,thent, else t; ~ If t;then 1, else £; I ——
|f F then tz else tg ~ tg



Call-by-Value Dynamics: Functions

t, ~
1 1, App1 -
L I, = 11 I letx =vint ~= |v/x]|t
I, ~ t-
2—2,App2 —_— s -8k ! —
Vil Vi (funx: T — {t}H)v ~= [v/x]t

Let

letx =1t Int, =~ letx =1 Int,



Call-by-Value Dynamics: Tuples

liv1 = g

1 “i+-1° > ]

Tuple



Call-by-Value Dynamics:

h~ 1
Ma
match #;{(x, ..., x;) = 1} ~ match#{(x,...,x;) = 1,}

tch

Tuplef

match (v, ..., v)1 (X}, ..., X)) = b} ~ [vi/x;]---[v./x;]t,



Part 5:Records



[

New Syntactic Forms: Adding Records

Suppose we have a set of labels &

Terms

Values
=|F Y = 1 ::
. | F
} if ¢, then ¢, else 1, funx: T — (1)
X - -
| funx: T — {t} =V =,
| 1 1,
‘(llztl’ ’ll:tl)
| 7.1




Example: Records
(x=2,y=35):(x:Int,y: Int)

(desc = "brake rotor", partno = 3947,cost = 250) : (desc : String, partno : Int, cost : Float)



Statics: Bools

't :Bool ThH6:T Thkt:T T~ T:Bool |

[ ifz thenselsezs - T ” .
Ththent, elsels T - F : Bool



Statics: Functions

I,x: T, F1t:7,
'yyx: Tl -x:T ) I'Efunx: T, - {t}: T, = T, :
' : T, -1, T'Ht: T I'=¢:7, L,x:T,F1t:71,

I'E1t,: T, I'Hletx=1¢1nt,: T



Statics: Records

Chet:T, - ThH¢:T

l

Record

I'Ee:(:T,...,[.: T)
I'E¢. [T,

Proj



Call-by-Value Dynamics: Bools

IfT

f ~ 1 If Tthent,elset; ~ 1,

If t,thent, else t; ~ If t;then 1, else £; I ——
|f F then tz else tg ~ tg



Call-by-Value Dynamics: Functions

t, ~
1 1, App1 -
L I, = 11 I letx =vint ~= |v/x]|t
I, ~ t-
2—2,App2 —_— s -8k ! —
Vil Vi (funx: T — {t}H)v ~= [v/x]t

Let

letx =1t Int, =~ letx =1 Int,



Call-by-Value Dynamics: Records

/
i1 = Ly
Record



Call-by-Value Dynamics: Records

t~t

Proj



Part 6: Mutable References



Up until now, all of the languages we have studied have been pure.



Up until now, all of the languages we have studied have been pure.

pure: a programming language without computational effects.



Up until now, all of the languages we have studied have been pure.

pure: a programming language without computational effects.

computational effect: programs that interact or modify with the outside world



Computational Effects

- mutable references

- input/output

- networking

- non-local transfers of control

- inter-process synchronization



Computational Effects

- input/output
- networking
- non-local transfers of control

- inter-process synchronization



Key Concepts

allocation (references)
assignment operator
explicit dereferencing

stores (or heaps)



Allocation

Allocating a reference: ref 5 : Ref Nat



Allocation

Allocating a reference: ref 5 : Ref Nat

allocate a new cell



Allocation

Allocating a reference: ref 5 : Ref Nat

L initial value

allocate a new cell



Allocation

Allocating a reference: ref 5 : Ref Nat

| T— type of initial value
initial value

allocate a new cell



Assignment

Assignment operator: r := 7 : Unit



Assignment

Assignment operator: r := 7 : Unit

a reference



Assignment

Assignment operator: 7 := 7 : Unit

L new value

a reference



Assignment

Assignment operator: r := 7 : Unit

| L assignment’s type
new value

a reference



Assignment

Assignment operator: r := 7 : Unit

Example:

letr = ref 5
#r : Ref Nat
ro=",
#unit ;: Unit



Dereferencing

Dereferencing operator: !r : Nat



Dereferencing

Dereferencing operator: !r : Nat

a reference



Dereferencing

Dereferencing operator: !r : Nat

L type of value

a reference



Dereferencing

Dereferencing operator: !r : Nat Example:

letr = ref 5
#r : Ref Nat

ba

#5 : Nat
ro="17
#unit : Unit
lr

# '/ : Nat



Sequencing

't : () 't : T
't : T )



Sequencing

CHt,:(0 Thk4:T letr = ref 7

Tt T r .= succ(!r); !r
# 8 . Nat



Sequencing

letr = ref’/

. r ;= succ(!r);
r ;= succ(!r);
r ;= succ(!r);
r .= succ(!r);
lr

#11 : Nat

't :() 't : T
't : T



Stores

- Locations are essentially pointers. Stores: Store Typings:
U= 2=
| u, [ =v | 2, [: T

- Stores are sets of mappings from
locations to values.

- Store typings are sets of locations

with their tvpes Store Substitution:

%, ifu=qo

- Think of these as "contexts" for
stores, but rather than free [t/ =

variables and types we have
locations and types.

[t/ U= [t/llv Fu=u,l=v)



Stores

- Stores will be the states during Stores: Store Typings:
evaluation. =g Y, = O
| u,l=v X0 T

- Store typings will be used to type
locations during typing.



Base + Mutable References

Terms Values Types Stores Store Typings
L= ... V= T:=... ui=g =0
“eft | | Ref T RN | 2,0: T
't
[ =1



Base + Mutable References

Existing typing rules are >(Hh=T ['|2F¢ :RefT '2+F6:T

updated to the judgment m'% Wawgn
' 2kFt:T

existing rules don't ' 2kF7:T ['|2F1t:RefT

change except to carry mref Wdemf

the X along to each
premise.



Base + Mutable References

o Ty g are [ & dom(u) _ il =il
P 1758 ’ [y, | reft;] ~ [, | ref 1]

fv] ~ [ l=v |1
| 110 ~ Loy | 1] [ | refv] ~ [p,l=v | ]

existing rules don't ) = v
change except to carry ':/tl()— derefs Mderef
the u along to each ARV EAVARY [/41 | !tl] ~ [//iz | !tz]

premise; where we
replace every t;, ~ t,

with [p) | 1] ~ [u, | 1]



Base + Mutable References

Existing evaluation rules are

updated to the judgment | L:=v] ~[[v/iu| O]
[y 1 1]~ Ly | 1)

existing rules don't ' T
change except to carry [y 1 =6 ~ Ly | 1) := 1]
the 1 along to each ,
premise; where we [//tl | tz] ~ [/42 ‘ tz]

replace every ¢, ~ 1, (1, | vy i= 6] ~ [ | vy := 2]
with [y | 1] = [t | 1] T T

assigng

[y | (]~ [ | 1]

assign1

assign2



Part 7: Subtyping

System: Base + Records



Motivating Example

What type does this program have?
(fun(r: (x : Nat) —» {r.x}) (x = 0,y = succ0)



Motivating Example

What type does this program have?
(fun(r: (x : Nat) —» {r.x}) (x = 0,y = succ0)

(x : Nat) — Nat



Motivating Example

What type does this program have?
(fun(r: (x : Nat) —» {r.x}) (x = 0,y = succ0)

(x : Nat) —> Nat (x : Nat, y : Nat)



Motivating Example

What type does this program have?
(fun(r: (x : Nat) —» {r.x}) (x = 0,y = succ0)

(x : Nat) —> Nat (x : Nat, y : Nat)

% it's not typeablel!



Motivating Example

What type does this program have?
(fun(r: (x : Nat) —» {r.x}) (x = 0,y = succ0)

(x : Nat) —> Nat (x : Nat, y : Nat)

identical

., el 'y : T, —->T1T, T'kHt:T
& It's not typeable!! CFoo:T, PP



Motivating Example

What type does this program have?

(fun(r: (x : Nat) —» {r.x}) (x = 0,y = succ0)

(x : Nat) —> Nat (x : Nat, y : Nat)
different
Fl_tl ) Tl —> T2 Fl_tz Ti Tl <: Ti {li:Ti"”’lJ{:Y}}g{11:T1”"’li:Ti} Sub
App e ———————————————————————————————————— | © C O U

I It T2 2Ty, s Ty < (2 Ty, .00, 100 T))



Motivating Example

W
Subtyping

Increases the set of typeable programs by generalizing the
types of the programs that flow into another.

' 11, T'H6o: T, T, <:T]
I'=¢4t: T,

App



Subtyping

principle of safe substitution

S is a subtype of T, written S <: T, means any term of type S

can safely be used in a context where a term of type T is
expected.




Subtyping

S is a subtype of T, written S <: T, every value described by S
is also described by 7.

subset semantics



o
Subtyping
subsumption
I'F1:1T, 1, <: 1,

every element ¢ of T is also an element of T, CET b




Subtyping

' (x =0,y =succ(0)) : (x: Nat,y : Nat) (x : Nat,y : Nat) <: (x : Nat)

ub

' (x =0,y =succ(0)) : (x : Nat)



Base + Subtyping

The only syntax that changes is the addition of a Top type.

Terms Values Types
[ .= ... V.= ... T - —

| Top



Base + Subtyping

Subtyping Rules
1 < 1, 15 <: 15

Refl -_— Jrans op

I <: T I <: 15 I <: Top

I <: T, I, <: T,

Arrow



Base + Records + Subtyping

Subtyping Rules Vie {l..n).T,<: T’
— (" RecWidth . R € C D € P T
(li : Ti)le{l...n+k} <: (ll : Ti)lE{l...n} (ll : Ti)ie{l...n} <: (ll : Ti/)ie{l...n}

(li : Ti)iE{l...n} < (l] : ]}/)jE{l...n}

RecDepth



Base + Subtyping

Typing rules are all the same, except the addition of
the subsumption rule.

I'=e¢: T, 1)< 1,
CFt:7,

ub



