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Part 1: Base System



t ::= 𝖳

∣ t1 t2

∣ 𝖥

∣ 𝗌𝗎𝖼𝖼(t)
∣ x
∣ 𝖿𝗎𝗇 x : T → {t}

∣ ()
∣ 𝗆𝖺𝗍𝖼𝗁 t { ∣ p1 → t1 ∣ … ∣ pi → ti}

∣ 0

v ::= 𝖳
∣ 𝖥
∣ 𝖿𝗎𝗇 x : T → {t}
∣ ()
∣ n

Terms Values
Base Syntax

T ::= 𝖡𝗈𝗈𝗅

∣ T1 → T2

∣ 𝖭𝖺𝗍
∣ ()

TypesPatterns
p ::= x

∣ 0
∣ 𝗌𝗎𝖼𝖼(x)

∣ ()
∣ 𝖳
∣ 𝖥

Nats
n ::= 0

∣ 𝗌𝗎𝖼𝖼(n)



Statics: Bools

Γ ⊢ t : 𝖡𝗈𝗈𝗅 Γ ⊢ t2 : T
If

Γ ⊢ 𝗆𝖺𝗍𝖼𝗁 t { ∣ 𝖳 → t2 ∣ 𝖥 → t3} : T
Γ ⊢ t3 : T Γ ⊢ 𝖳 : 𝖡𝗈𝗈𝗅

T

Γ ⊢ 𝖥 : 𝖡𝗈𝗈𝗅
F



Statics: Nats

Γ ⊢ t : 𝖭𝖺𝗍 Γ ⊢ t2 : T
matchNat

Γ ⊢ 𝗆𝖺𝗍𝖼𝗁 t { ∣ 𝟢 → t2 ∣ 𝗌𝗎𝖼𝖼(x) → t3} : T
Γ, x : 𝖭𝖺𝗍 ⊢ t3 : T

Γ ⊢ 0 : 𝖭𝖺𝗍
0

Γ ⊢ 𝗌𝗎𝖼𝖼(t) : 𝖭𝖺𝗍
succ

Γ ⊢ t : 𝖭𝖺𝗍



Statics: Functions

Γ, x : T1 ⊢ t : T2
Fun

Γ ⊢ 𝖿𝗎𝗇 x : T1 → {t} : T1 → T2

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T
App

Γ ⊢ t1 t2 : T2

Var

Γ1, x : T, Γ2 ⊢ x : T

Γ ⊢ t1 : T1
Let

Γ ⊢ 𝗆𝖺𝗍𝖼𝗁 t1 { ∣ x → t2} : T
Γ, x : T1 ⊢ t2 : T2



Statics: Unit

Unit

Γ ⊢ () : ()
Match

Γ ⊢ 𝗆𝖺𝗍𝖼𝗁 t1 { ∣ () → t2} : T
Γ ⊢ t1 : () Γ ⊢ t2 : T



Call-by-Value Dynamics: Match

𝗆𝖺𝗍𝖼𝗁 v { ∣ x → t} ↝ [v/x]t
letβ

𝗆𝖺𝗍𝖼𝗁 𝖳 { ∣ 𝖳 → t1 ∣ 𝖥 → t2} ↝ t1
ifβ1

𝗆𝖺𝗍𝖼𝗁 𝖥 { ∣ 𝖳 → t1 ∣ 𝖥 → t2} ↝ t2
ifβ2

𝗆𝖺𝗍𝖼𝗁 𝟢 { ∣ 𝟢 → t1 ∣ 𝗌𝗎𝖼𝖼(x) → t2} ↝ t1
natβ1

𝗆𝖺𝗍𝖼𝗁 𝗌𝗎𝖼𝖼(n) { ∣ 𝟢 → t1 ∣ 𝗌𝗎𝖼𝖼(x) → t2} ↝ [n/x]t2
natβ2

𝗆𝖺𝗍𝖼𝗁 () { ∣ () → t} ↝ t
unitβ



Call-by-Value Dynamics: Match

t ↝ t′￼

match

𝗆𝖺𝗍𝖼𝗁 t { ∣ p1 → t1 ∣ … ∣ pi → ti} ↝ 𝗆𝖺𝗍𝖼𝗁 t′￼{ ∣ p1 → t1 ∣ … ∣ pi → ti}



Call-by-Value Dynamics: Functions
t1 ↝ t′￼1

App1

t1 t2 ↝ t′￼1 t2

t2 ↝ t′￼2
App2

v1 t2 ↝ v1 t′￼2

β
(𝖿𝗎𝗇 x : T → {t}) v ↝ [v/x]t



Part 2:Unit



Example: Side Effects

Γ ⊢ t : 𝖲𝗍𝗋𝗂𝗇𝗀

Γ ⊢ 𝗉𝗋𝗂𝗇𝗍 t : ()
Print

Outputting a string to the screen doesn’t return a 
value, and so we can model this by returning the unit.



Statics: Unit

Unit

Γ ⊢ () : ()
Match

Γ ⊢ 𝗆𝖺𝗍𝖼𝗁 t1{ ∣ () → t2} : T
Γ ⊢ t1 : () Γ ⊢ t2 : T



Sequencing

Γ ⊢ t1 : () Γ ⊢ t2 : T
Seq

Γ ⊢ t1; t2 : T
𝗅𝖾𝗍 r = 𝗋𝖾𝖿 7
r := 𝗌𝗎𝖼𝖼(!r); !r
# 8 : 𝖭𝖺𝗍



Sequencing

Γ ⊢ t1 : () Γ ⊢ t2 : T
Seq

Γ ⊢ t1; t2 : T
𝗅𝖾𝗍 r = 𝗋𝖾𝖿 7
r := 𝗌𝗎𝖼𝖼(!r); !r
# 8 : 𝖭𝖺𝗍t1; t2 = 𝗆𝖺𝗍𝖼𝗁 t1 { ∣ () → t2}

Sequencing is match!



Call-by-Value Dynamics: Unit

t1 ↝ t′￼1
Match

𝗆𝖺𝗍𝖼𝗁 t1 { ∣ () → t2} ↝ 𝗆𝖺𝗍𝖼𝗁 t′￼1 { ∣ () → t2}

𝖴𝗇𝗂𝗍β
𝗆𝖺𝗍𝖼𝗁 (){ ∣ () → t2} ↝ t2



Part 3:Pairs



t ::= 𝖳

∣ 𝗅𝖾𝗍 x = t1 𝗂𝗇 t2

∣ t1 t2

∣ 𝖥
∣ 𝗂𝖿 t1 𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3
∣ x
∣ 𝖿𝗎𝗇 x : T → {t}

∣ (t1, t2)
∣ t.1
∣ t.2

v ::= 𝖳
∣ 𝖥
∣ 𝖿𝗎𝗇 x : T → {t}
∣ (v1, v2)

Terms Values

New Syntactic Forms: Adding Pairs

T ::= 𝖡𝗈𝗈𝗅
∣ (T1, T2)
∣ T1 → T2

Types



Example Programs
𝗅𝖾𝗍 𝗍𝗐𝗂𝗌𝗍 = 𝖿𝗎𝗇 p : (𝖡𝗈𝗈𝗅, 𝖡𝗈𝗈𝗅) → {(p.2,p.1)}

𝗂𝗇 𝗍𝗐𝗂𝗌𝗍 (𝖳, 𝖥)

𝗅𝖾𝗍 𝗌𝖾𝖼𝗈𝗇𝖽 = 𝖿𝗎𝗇 p : (𝖡𝗈𝗈𝗅 → 𝖡𝗈𝗈𝗅, 𝖡𝗈𝗈𝗅) → {𝗂𝖿 p.2 𝗍𝗁𝖾𝗇 p.1 𝖳 𝖾𝗅𝗌𝖾 𝖥}
𝗂𝗇 𝗌𝖾𝖼𝗈𝗇𝖽 (𝖿𝗎𝗇 x : 𝖡𝗈𝗈𝗅 → {𝗂𝖿 x 𝗍𝗁𝖾𝗇 𝖥 𝖾𝗅𝗌𝖾 𝖳}, 𝖳)



Statics: Bools

Γ ⊢ t1 : 𝖡𝗈𝗈𝗅 Γ ⊢ t2 : T
If

Γ ⊢ 𝗂𝖿 t1 𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3 : T
Γ ⊢ t3 : T Γ ⊢ 𝖳 : 𝖡𝗈𝗈𝗅

T

Γ ⊢ 𝖥 : 𝖡𝗈𝗈𝗅
F



Statics: Functions

Γ, x : T1 ⊢ t : T2
Fun

Γ ⊢ 𝖿𝗎𝗇 x : T1 → {t} : T1 → T2

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T1
App

Γ ⊢ t1 t2 : T2

Var

Γ1, x : T, Γ2 ⊢ x : T

Γ ⊢ t1 : T1
Let

Γ ⊢ 𝗅𝖾𝗍 x = t1 𝗂𝗇 t2 : T2

Γ, x : T1 ⊢ t2 : T2



Statics: Pairs

Γ ⊢ t1 : T1 Γ ⊢ t2 : T2
Pair

Γ ⊢ (t1, t2) : (T1, T2)
Γ ⊢ t.1 : T1

First
Γ ⊢ t : (T1, T2)

Γ ⊢ t.2 : T2
Second

Γ ⊢ t : (T1, T2)



Call-by-Value Dynamics: Bools

t1 ↝ t′￼1
If

𝗂𝖿 t1𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3 ↝ 𝗂𝖿 t′￼1𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3

IfT
𝗂𝖿 𝖳 𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3 ↝ t2

IfF

𝗂𝖿 𝖥 𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3 ↝ t3



Call-by-Value Dynamics: Functions
t1 ↝ t′￼1

App1

t1 t2 ↝ t′￼1 t2

t2 ↝ t′￼2
App2

v1 t2 ↝ v1 t′￼2
β

(𝖿𝗎𝗇 x : T → {t}) v ↝ [v/x]t

Letβ𝗅𝖾𝗍 x = v 𝗂𝗇 t ↝ [v/x]t

t1 ↝ t′￼1
Let

𝗅𝖾𝗍 x = t1 𝗂𝗇 t2 ↝ 𝗅𝖾𝗍 x = t′￼1 𝗂𝗇 t2



Call-by-Value Dynamics: Pairs

t1 ↝ t′￼1
Pair1

(t1, t2) ↝ (t′￼1, t2)
𝖯𝖺𝗂𝗋β1(v1, v2).1 ↝ v1

t2 ↝ t′￼2
Pair2

(v1, t2) ↝ (v1, t′￼2)
𝖯𝖺𝗂𝗋β2(v1, v2).2 ↝ v2

t ↝ t′￼

Proj1

t.1 ↝ t′￼.1

t ↝ t′￼

Proj2

t.2 ↝ t′￼.2



Part 4:Tuples



t ::= 𝖳

∣ t1 t2

∣ 𝖥
∣ 𝗂𝖿 t1 𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3
∣ x
∣ 𝖿𝗎𝗇 x : T → {t}

∣ 𝗅𝖾𝗍 x = t1 𝗂𝗇 t2

∣ (t1, …, ti)
∣ 𝗆𝖺𝗍𝖼𝗁 t1{(x1, …, xi) → t2}

v ::= 𝖳
∣ 𝖥
∣ 𝖿𝗎𝗇 x : T → {t}
∣ (v1, …, vi)

Terms Values

New Syntactic Forms: Adding Tuples

T ::= 𝖡𝗈𝗈𝗅

∣ T1 → T2

∣ (T1, …, Ti)

Types



Example: Tuple

(𝖳, 𝖥, 𝖳, 𝖥, 𝖥) 𝖿𝗎𝗇 (p : (𝖡𝗈𝗈𝗅, 𝖡𝗈𝗈𝗅, 𝖡𝗈𝗈𝗅)) → {
𝗆𝖺𝗍𝖼𝗁 p {

(x, y, z) → 𝗂𝖿 x
𝗍𝗁𝖾𝗇 𝗂𝖿 y

𝗍𝗁𝖾𝗇 z
𝖾𝗅𝗌𝖾 𝖥𝖺𝗅𝗌𝖾

𝖾𝗅𝗌𝖾 𝖥𝖺𝗅𝗌𝖾
}

}



Statics: Bools

Γ ⊢ t1 : 𝖡𝗈𝗈𝗅 Γ ⊢ t2 : T
If

Γ ⊢ 𝗂𝖿 t1 𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3 : T
Γ ⊢ t3 : T Γ ⊢ 𝖳 : 𝖡𝗈𝗈𝗅

T

Γ ⊢ 𝖥 : 𝖡𝗈𝗈𝗅
F



Statics: Functions

Γ, x : T1 ⊢ t : T2
Fun

Γ ⊢ 𝖿𝗎𝗇 x : T1 → {t} : T1 → T2

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T
App

Γ ⊢ t1 t2 : T2

Var

Γ1, x : T, Γ2 ⊢ x : T

Γ ⊢ t1 : T1
Let

Γ ⊢ 𝗅𝖾𝗍 x = t1 𝗂𝗇 t2 : T
Γ, x : T1 ⊢ t : T2



Statics: Tuples

Match
Γ ⊢ 𝗆𝖺𝗍𝖼𝗁 t1{(x1, …, xi) → t2} : T

Γ ⊢ t1 : (T1, …, Ti) Γ, x1 : T1, …, xi : Ti ⊢ t2 : T

Γ ⊢ t1 : T1 Γ ⊢ ti : Ti
Tuple

Γ ⊢ (t1, …, ti) : (T1, …, Ti)
⋯



Call-by-Value Dynamics: Bools

t1 ↝ t′￼1
If

𝗂𝖿 t1𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3 ↝ 𝗂𝖿 t′￼1𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3

IfT
𝗂𝖿 𝖳 𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3 ↝ t2

IfF

𝗂𝖿 𝖥 𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3 ↝ t3



Call-by-Value Dynamics: Functions
t1 ↝ t′￼1

App1

t1 t2 ↝ t′￼1 t2

t2 ↝ t′￼2
App2

v1 t2 ↝ v1 t′￼2
β

(𝖿𝗎𝗇 x : T → {t}) v ↝ [v/x]t

Letβ𝗅𝖾𝗍 x = v 𝗂𝗇 t ↝ [v/x]t

t1 ↝ t′￼1
Let

𝗅𝖾𝗍 x = t1 𝗂𝗇 t2 ↝ 𝗅𝖾𝗍 x = t′￼1 𝗂𝗇 t2



Call-by-Value Dynamics: Tuples

ti+1 ↝ t′￼i+1
Tuple

(v1, …, vi, ti+1, …, tj) ↝ (v1, …, vi, t′￼i+1, …, tj)



Call-by-Value Dynamics: Tuples

t1 ↝ t′￼1
Match

𝗆𝖺𝗍𝖼𝗁 t1{(x1, …, xi) → t2} ↝ 𝗆𝖺𝗍𝖼𝗁 t′￼1{(x1, …, xi) → t2}

𝖳𝗎𝗉𝗅𝖾β

𝗆𝖺𝗍𝖼𝗁 (v1, …, vi){(x1, …, xi) → t2} ↝ [v1/x1]⋯[vi/xi]t2



Part 5:Records



t ::= 𝖳

∣ t1 t2

∣ 𝖥
∣ 𝗂𝖿 t1 𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3
∣ x
∣ 𝖿𝗎𝗇 x : T → {t}

∣ 𝗅𝖾𝗍 x = t1 𝗂𝗇 t2

∣ (l1 = t1, …, li = ti)
∣ t . l

v ::= 𝖳
∣ 𝖥
∣ 𝖿𝗎𝗇 x : T → {t}
∣ (l1 = v1, …, li = vi)

Terms Values

New Syntactic Forms: Adding Records

T ::= 𝖡𝗈𝗈𝗅

∣ T1 → T2

∣ (l1 : T1, …, li : Ti)

Types

Suppose we have a set of labels ℒ



Example: Records
(x = 2,y = 5) : (x : 𝖨𝗇𝗍, y : 𝖨𝗇𝗍)

(desc = "brake rotor", partno = 3947,cost = 250) : (desc : 𝖲𝗍𝗋𝗂𝗇𝗀, partno : 𝖨𝗇𝗍, cost : 𝖥𝗅𝗈𝖺𝗍)



Statics: Bools

Γ ⊢ t1 : 𝖡𝗈𝗈𝗅 Γ ⊢ t2 : T
If

Γ ⊢ 𝗂𝖿 t1 𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3 : T
Γ ⊢ t3 : T Γ ⊢ 𝖳 : 𝖡𝗈𝗈𝗅

T

Γ ⊢ 𝖥 : 𝖡𝗈𝗈𝗅
F



Statics: Functions

Γ, x : T1 ⊢ t : T2
Fun

Γ ⊢ 𝖿𝗎𝗇 x : T1 → {t} : T1 → T2

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T
App

Γ ⊢ t1 t2 : T2

Var

Γ1, x : T, Γ2 ⊢ x : T

Γ ⊢ t1 : T1
Let

Γ ⊢ 𝗅𝖾𝗍 x = t1 𝗂𝗇 t2 : T
Γ, x : T1 ⊢ t : T2



Statics: Records

Proj
Γ ⊢ t . li : Ti

Γ ⊢ t : (l1 : T1, …, li : Ti)

Γ ⊢ t1 : T1 Γ ⊢ ti : Ti
Record

Γ ⊢ (l1 = t1, …, li = ti) : (l1 : T1, …, li : Ti)
⋯



Call-by-Value Dynamics: Bools

t1 ↝ t′￼1
If

𝗂𝖿 t1𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3 ↝ 𝗂𝖿 t′￼1𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3

IfT
𝗂𝖿 𝖳 𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3 ↝ t2

IfF

𝗂𝖿 𝖥 𝗍𝗁𝖾𝗇 t2 𝖾𝗅𝗌𝖾 t3 ↝ t3



Call-by-Value Dynamics: Functions
t1 ↝ t′￼1

App1

t1 t2 ↝ t′￼1 t2

t2 ↝ t′￼2
App2

v1 t2 ↝ v1 t′￼2
β

(𝖿𝗎𝗇 x : T → {t}) v ↝ [v/x]t

Letβ𝗅𝖾𝗍 x = v 𝗂𝗇 t ↝ [v/x]t

t1 ↝ t′￼1
Let

𝗅𝖾𝗍 x = t1 𝗂𝗇 t2 ↝ 𝗅𝖾𝗍 x = t′￼1 𝗂𝗇 t2



Call-by-Value Dynamics: Records

ti+1 ↝ t′￼i+1
Record

(l1 = v1, …, li = vi, li+1 = ti+1, …, lj = tj) ↝ (l1 = v1, …, li = vi, li+1 = t′￼i+1, …, lj = tj)



Call-by-Value Dynamics: Records

t ↝ t′￼

Proj

t . li ↝ t′￼. li
𝖱𝖾𝖼𝗈𝗋𝖽β

(l1 = v1, …, li = vi) . lj ↝ vj



Part 6: Mutable References



Up until now, all of the languages we have studied have been pure.



Up until now, all of the languages we have studied have been pure.

pure: a programming language without computational effects.



Up until now, all of the languages we have studied have been pure.

pure: a programming language without computational effects.

computational effect: programs that interact or modify with the outside world



Computational Effects
- mutable references 

- input/output 

- networking 

- non-local transfers of control 

- inter-process synchronization



Computational Effects
- mutable references 

- input/output 

- networking 

- non-local transfers of control 

- inter-process synchronization



Key Concepts

- allocation (references)  

- assignment operator 

- explicit dereferencing  

- stores (or heaps)



Allocation
Allocating a reference: 𝗋𝖾𝖿 5 : 𝖱𝖾𝖿 𝖭𝖺𝗍



Allocation
Allocating a reference: 𝗋𝖾𝖿 5 : 𝖱𝖾𝖿 𝖭𝖺𝗍

allocate a new cell



Allocation
Allocating a reference: 𝗋𝖾𝖿 5 : 𝖱𝖾𝖿 𝖭𝖺𝗍

allocate a new cell

initial value



Allocation
Allocating a reference: 𝗋𝖾𝖿 5 : 𝖱𝖾𝖿 𝖭𝖺𝗍

allocate a new cell

initial value

type of initial value



Assignment
Assignment operator: r := 7 : 𝖴𝗇𝗂𝗍



Assignment
Assignment operator: r := 7 : 𝖴𝗇𝗂𝗍
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Assignment
Assignment operator: r := 7 : 𝖴𝗇𝗂𝗍
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new value



Assignment
Assignment operator: r := 7 : 𝖴𝗇𝗂𝗍

a reference

new value

assignment’s type



Assignment
Assignment operator: r := 7 : 𝖴𝗇𝗂𝗍

# r : 𝖱𝖾𝖿 𝖭𝖺𝗍
𝗅𝖾𝗍 r = 𝗋𝖾𝖿 5

r := 7

Example:

# 𝗎𝗇𝗂𝗍 : 𝖴𝗇𝗂𝗍



Dereferencing
Dereferencing operator: !r : 𝖭𝖺𝗍



Dereferencing
Dereferencing operator: !r : 𝖭𝖺𝗍

a reference



Dereferencing
Dereferencing operator: !r : 𝖭𝖺𝗍

a reference

type of value



Dereferencing
Dereferencing operator: !r : 𝖭𝖺𝗍

# r : 𝖱𝖾𝖿 𝖭𝖺𝗍
𝗅𝖾𝗍 r = 𝗋𝖾𝖿 5

r := 7

Example:

# 𝗎𝗇𝗂𝗍 : 𝖴𝗇𝗂𝗍

!r
# 5 : 𝖭𝖺𝗍

!r
# 7 : 𝖭𝖺𝗍



Sequencing

Γ ⊢ t1 : () Γ ⊢ t2 : T
Seq

Γ ⊢ t1; t2 : T



Sequencing

Γ ⊢ t1 : () Γ ⊢ t2 : T
Seq

Γ ⊢ t1; t2 : T
𝗅𝖾𝗍 r = 𝗋𝖾𝖿 7
r := 𝗌𝗎𝖼𝖼(!r); !r
# 8 : 𝖭𝖺𝗍



Sequencing

Γ ⊢ t1 : () Γ ⊢ t2 : T
Seq

Γ ⊢ t1; t2 : T

𝗅𝖾𝗍 r = 𝗋𝖾𝖿 7
r := 𝗌𝗎𝖼𝖼(!r);

# 11 : 𝖭𝖺𝗍

r := 𝗌𝗎𝖼𝖼(!r);
r := 𝗌𝗎𝖼𝖼(!r);
r := 𝗌𝗎𝖼𝖼(!r);
!r



Stores
Stores:

μ ::= ∅
∣ μ, l = v

Store Typings:

Σ ::= ∅
∣ Σ, l : T

- Locations are essentially pointers. 

- Stores are sets of mappings from 
locations to values. 

- Store typings are sets of locations 
with their types. 

- Think of these as "contexts" for 
stores, but rather than free 
variables and types we have 
locations and types.

[t/l]μ =

Store Substitution:

{∅

[t/l]μ, l′￼ = [t/l]v

if μ = ∅

if μ = (μ, l′￼ = v)



Stores
Stores:

μ ::= ∅
∣ μ, l = v

Store Typings:

Σ ::= ∅
∣ Σ, l : T

- Stores will be the states during 
evaluation. 

- Store typings will be used to type 
locations during typing.



Base + Mutable References
t ::= …

∣ 𝗋𝖾𝖿 t

∣ t1 := t2
∣ l

∣ !t

v ::= …
∣ l

Terms Values

T ::= …
∣ 𝖱𝖾𝖿 T

Types Stores

μ ::= ∅
∣ μ, l = v

Store Typings

Σ ::= ∅
∣ Σ, l : T



Base + Mutable References
Existing typing rules are 
updated to the judgment

Γ ∣ Σ ⊢ t : T
existing rules don’t 
change except to carry 
the  along to each 
premise.

Σ
ref

Γ ⊢ 𝗋𝖾𝖿 t : 𝖱𝖾𝖿 T
Γ ∣ Σ ⊢ t : T

loc
Γ ∣ Σ ⊢ l : 𝖱𝖾𝖿 T

Σ(l) = T
assign

Γ ⊢ t1 := t2 : 𝖴𝗇𝗂𝗍
Γ ∣ Σ ⊢ t1 : 𝖱𝖾𝖿 T Γ ∣ Σ ⊢ t2 : T

deref

Γ ⊢ !t : T
Γ ∣ Σ ⊢ t : 𝖱𝖾𝖿 T



Base + Mutable References
Existing evaluation rules are 
updated to the judgment

[μ1 ∣ t1] ↝ [μ2 ∣ t2]
existing rules don’t 
change except to carry 
the  along to each 
premise; where we 
replace every  
with .

μ

t1 ↝ t2
[μ1 ∣ t1] ↝ [μ2 ∣ t2]

ref
[μ1 ∣ 𝗋𝖾𝖿 t1] ↝ [μ2 ∣ 𝗋𝖾𝖿 t2]

[μ1 ∣ t1] ↝ [μ2 ∣ t2]

derefβ
[μ ∣ !l] ↝ [μ ∣ v]

μ(l) = v

refβ
[μ ∣ 𝗋𝖾𝖿 v] ↝ [μ, l = v ∣ l]

l ∉ 𝖽𝗈𝗆(μ)

deref
[μ1 ∣ !t1] ↝ [μ2 ∣ !t2]
[μ1 ∣ t1] ↝ [μ2 ∣ t2]



Base + Mutable References
Existing evaluation rules are 
updated to the judgment

[μ1 ∣ t1] ↝ [μ2 ∣ t2]
existing rules don’t 
change except to carry 
the  along to each 
premise; where we 
replace every  
with .

μ

t1 ↝ t2
[μ1 ∣ t1] ↝ [μ2 ∣ t2]

assignβ

[μ ∣ l := v] ↝ [[v/l]μ ∣ ()]

assign1

[μ1 ∣ t1 := t2] ↝ [μ2 ∣ t′￼1 := t2]
[μ1 ∣ t1] ↝ [μ2 ∣ t′￼1]

assign2

[μ1 ∣ v1 := t2] ↝ [μ2 ∣ v1 := t′￼2]
[μ1 ∣ t2] ↝ [μ2 ∣ t′￼2]



Part 7: Subtyping
System: Base + Records



Motivating Example

(𝖿𝗎𝗇 (r : (x : 𝖭𝖺𝗍) → {r . x}) (x = 0,y = 𝗌𝗎𝖼𝖼 0)

What type does this program have?



Motivating Example

(𝖿𝗎𝗇 (r : (x : 𝖭𝖺𝗍) → {r . x}) (x = 0,y = 𝗌𝗎𝖼𝖼 0)

What type does this program have?

(x : 𝖭𝖺𝗍) → 𝖭𝖺𝗍



Motivating Example

(𝖿𝗎𝗇 (r : (x : 𝖭𝖺𝗍) → {r . x}) (x = 0,y = 𝗌𝗎𝖼𝖼 0)

What type does this program have?

(x : 𝖭𝖺𝗍) → 𝖭𝖺𝗍 (x : 𝖭𝖺𝗍, y : 𝖭𝖺𝗍)



Motivating Example

(𝖿𝗎𝗇 (r : (x : 𝖭𝖺𝗍) → {r . x}) (x = 0,y = 𝗌𝗎𝖼𝖼 0)

What type does this program have?

(x : 𝖭𝖺𝗍) → 𝖭𝖺𝗍 (x : 𝖭𝖺𝗍, y : 𝖭𝖺𝗍)

😵 it’s not typeable!!



Motivating Example
(𝖿𝗎𝗇 (r : (x : 𝖭𝖺𝗍) → {r . x}) (x = 0,y = 𝗌𝗎𝖼𝖼 0)

What type does this program have?

(x : 𝖭𝖺𝗍) → 𝖭𝖺𝗍 (x : 𝖭𝖺𝗍, y : 𝖭𝖺𝗍)

😵 it’s not typeable!!
Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T1

App

Γ ⊢ t1 t2 : T2

identical



Motivating Example
(𝖿𝗎𝗇 (r : (x : 𝖭𝖺𝗍) → {r . x}) (x = 0,y = 𝗌𝗎𝖼𝖼 0)

What type does this program have?

(x : 𝖭𝖺𝗍) → 𝖭𝖺𝗍 (x : 𝖭𝖺𝗍, y : 𝖭𝖺𝗍)

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T′￼1
App

Γ ⊢ t1 t2 : T2

different

T1 <: T′￼1
(l1 : T1, …, li : Ti) <: (l′￼1 : T′￼1, …, l′￼j : T′￼j)

{l′￼1 : T′￼1, …, l′￼j : Tj} ⊆ {l1 : T1, …, li : Ti}
recSub



Motivating Example
(𝖿𝗎𝗇 (r : (x : 𝖭𝖺𝗍) → {r . x}) (x = 0,y = 𝗌𝗎𝖼𝖼 0)

What type does this program have?

(x : 𝖭𝖺𝗍) → 𝖭𝖺𝗍 (x : 𝖭𝖺𝗍, y : 𝖭𝖺𝗍)

(l1 : T1, …, li : Ti) <: (l′￼1 : T′￼1, …, l′￼j : T′￼j)

{l1 : T1, …, li : Ti} ⊆ {l′￼1 : T′￼1, …, l′￼j : T′￼j}
recSub

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T′￼1
App

Γ ⊢ t1 t2 : T2

T1 <: T′￼1

Increases the set of typeable programs by generalizing the 
types of the programs that flow into another.

Subtyping



Subtyping

 is a subtype of , written , means any term of type  
can safely be used in a context where a term of type  is 
expected.

S T S <: T S
T

principle of safe substitution



Subtyping

 is a subtype of , written , every value described by  
is also described by .
S T S <: T S

T

subset semantics



Subtyping
subsumption

Γ ⊢ t : T1 T1 <: T2
Γ ⊢ t : T2

subevery element  is also an element of t of T1 T2



Subtyping

Γ ⊢ (x = 0,y = 𝗌𝗎𝖼𝖼(0)) : (x : 𝖭𝖺𝗍, y : 𝖭𝖺𝗍) (x : 𝖭𝖺𝗍, y : 𝖭𝖺𝗍) <: (x : 𝖭𝖺𝗍)
Γ ⊢ (x = 0,y = 𝗌𝗎𝖼𝖼(0)) : (x : 𝖭𝖺𝗍)

sub



Base + Subtyping
The only syntax that changes is the addition of a  type.𝖳𝗈𝗉

t ::= … v ::= …
Terms Values

T ::= …
∣ 𝖳𝗈𝗉

Types



Base + Subtyping
Subtyping Rules

Ref

T <: T
T1 <: T2

Trans

T1 <: T3

T2 <: T3 Top

T <: 𝖳𝗈𝗉

T′￼1 <: T1
Arrow

T1 → T2 <: T′￼1 → T′￼2

T2 <: T′￼2



Base + Records + Subtyping
Subtyping Rules

RecWidth

(li : Ti)i∈{1…n+k} <: (li : Ti)i∈{1…n}

∀i ∈ {1…n} . Ti <: T′￼i
RecDepth

(li : Ti)i∈{1…n} <: (li : T′￼i)i∈{1…n}

(li : Ti)i∈{1…n} is a permutation of (lj : T′￼j) j∈{1…n}
RecDepth

(li : Ti)i∈{1…n} <: (lj : T′￼j) j∈{1…n}



Base + Subtyping

Γ ⊢ t : T1
Sub

Γ ⊢ t : T2

T1 <: T2

Typing rules are all the same, except the addition of 
the subsumption rule.


