
Programming Languages

Harley Eades

“We need to do away with the myth that computer
science is about computers. Computer science is
no more about computers than astronomy is about
telescopes, biology is about microscopes or
chemistry is about beakers and test tubes. Science
is not about tools, it is about how we use them and
what we find out when we do.” –Michael R. Fellows

“Controlled side effects is the many
ingredient of a safe and useful PL.” -
Simon Peyton Jones

What is this course about?

Graded Work

- All homework will be released and turned in via
a private Github repo.

- Please sign up for Github and send me a DM
on slack with your username.

Turing in Homework

Office hours are by appointment.

Ask questions online using Slack in #office_hours.

All course discussion must go through Slack unless it is
grade specific, then use my university email or ask via
Teams, or after class.

Getting Help

Collaboration is important in all areas of study.
So I recommend talking to other students for help.
However, there is a rule that must be followed: while
discussing homework solutions in a group of two or
more no one is allowed to write anything down, and
each student must prepare their solution in isolation.

Attendance
Attendance is optional, but highly encouraged. If
you do not come to class then there is a high
probability that you will fail this course.

The Project
Design and Implementation of a

Domain Specific Language
- You get to choose the language you want to implement.

- Groups of 1 or 2 students.

- Project Meeting: Each project and group will have to be
approved during the project meeting.

- Midpoint Report: At the halfway point of the project a
report detailing the projects progress is due.

- Final Exam: Project presentations!

What are Domain Specific Languages?

A programming language specifically designed to make
solving problems within a particular domain easier.

Example 1: Regular Expressions

The following pattern matches email addresses:

^([a-zA-Z0-9_\-\.]+)@([a-zA-Z0-9_\-\.]+)\.([a-zA-Z]{2,5})$

Regular expressions compile to deterministic finite
automata. That are used to conduct the matching.

Implementation:

Example 2: The Dot Language (Graphviz)
1: digraph G {

2: main -> parse -> execute;

3: main -> init;

4: main -> cleanup;

5: execute -> make_string;

6: execute -> printf

7: init -> make_string;

8: main -> printf;

9: execute -> compare;

10: }

Converts the input code to various output formats
like PDF, Png, LaTeX, etc.

Implementation:

Example 3: Verilog
module toplevel(clock,reset);

 input clock;

 input reset;

 reg flop1;

 reg flop2;

 always @ (posedge reset or posedge clock)

 if (reset)

 begin

 flop1 <= 0;

 flop2 <= 1;

 end

 else

 begin

 flop1 <= flop2;

 flop2 <= flop1;

 end

endmodule

Structure and behavior are
verified by a compiler, and
then realized as an actual
blueprint of an electronic
circuit.

Implementation:

