
Performance and Optimization
of Recursive Functions

Harley Eades III

Core Design Concepts Discussed:

Analysis Evaluation

The Performance HitConsider evaluating the following recursive function:
1. let rec mult m n =
2. if m == 0
3. then 0
4. else if n == 0
5. then 0
6. else let rc = mult m (n - 1) in
7. let ret = m + rc in
8. ret
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value

init

line: 16

ackermann
main

<fun>
<fun>

1. let rec mult m n =
2. if m == 0
3. then 0
4. else if n == 0
5. then 0
6. else let rc = mult m (n - 1) in
7. let ret = m + rc in
8. ret
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
ackermann

main
<fun>
<fun>

main

line: 13

m
n

answ

1
2
?

1. let rec mult m n =
2. if m == 0
3. then 0
4. else if n == 0
5. then 0
6. else let rc = mult m (n - 1) in
7. let ret = m + rc in
8. ret
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value

init

line: 16

ackermann
main

<fun>
<fun>

main

line: 13

m
n

answ

1
2
?

mult:

line 6

m
n
rc

1
2
?

1. let rec mult m n =
2. if m == 0
3. then 0
4. else if n == 0
5. then 0
6. else let rc = mult m (n - 1) in
7. let ret = m + rc in
8. ret
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
ackermann

main
<fun>
<fun>

main

line: 13

m
n

answ

1
2
?

mult:

line 6

m
n
rc

1
2
?

mult:

line 7

m
n

ret

1
1
?

1. let rec mult m n =
2. if m == 0
3. then 0
4. else if n == 0
5. then 0
6. else let rc = mult m (n - 1) in
7. let ret = m + rc in
8. ret
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
ackermann

main
<fun>
<fun>

main

line: 13

m
n

answ

1
2
?

mult

line: 6

m
n
rc

1
2
?

mult

line: 7

m
n
rc

1
1
?

mult

line: 5

m
n

1
0

1. let rec mult m n =
2. if m == 0
3. then 0
4. else if n == 0
5. then 0
6. else let rc = mult m (n - 1) in
7. let ret = m + rc in
8. ret
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
ackermann

main
<fun>
<fun>

main

line: 13

m
n

answ

1
2
?

mult

line: 6

m
n
rc

1
2
?

mult

line: 7

m
n

ret

1
1
0

mult

line: 5

m
n

1
0

1. let rec mult m n =
2. if m == 0
3. then 0
4. else if n == 0
5. then 0
6. else let rc = mult m (n - 1) in
7. let ret = m + rc in
8. ret
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
ackermann

main
<fun>
<fun>

main

line: 13

m
n

answ

1
2
?

mult

line: 6

m
n
rc

1
2
1

mult

line: 7

m
n
rc

1
1
0

mult

line: 5

m
n

1
0

1. let rec mult m n =
2. if m == 0
3. then 0
4. else if n == 0
5. then 0
6. else let rc = mult m (n - 1) in
7. let ret = m + rc in
8. ret
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
ackermann

main
<fun>
<fun>

main

line: 13

m
n

answ

1
2
2

mult

line: 6

m
n
rc

1
2
1

mult

line: 7

m
n
rc

1
1
0

mult

line: 5

m
n

1
0

1. let rec mult m n =
2. if m == 0
3. then 0
4. else if n == 0
5. then 0
6. else let rc = mult m (n - 1) in
7. let ret = m + rc in
8. ret
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

• Bad for performance: making a recursive
call in an argument position (line 7).

• This results in the bindings of an
activation record depending on the
return value of a new activation record.

• Thus, the compiler will create lots of
activation records that cannot be popped
off of the stack until the end of
evaluation.

• This results in a bad use of memory.

1. let rec mult m n =
2. if m == 0
3. then 0
4. else if n == 0
5. then 0
6. else let rc = mult m (n - 1) in
7. let ret = m + rc in
8. ret
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Tail Recursion using the accumulator pattern

1. let rec mult m n =

2. if m == 0

3. then 0

4. else if n == 0

5. then 0

6. else m + (mult m (n - 1))

1. let rec mult_helper acc m n =

2. if m == 0

3. then 0

4. else if n == 0

5. then acc

6. else mult_helper (m + acc) m (n - 1)

7.

8. let mult m n = mult_helper 0 m n

Non-tail recursive: Tail recursive:

Evaluation of
Tail Recursion

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

main
line: 13

m
n

answ

1
2
?

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

main
line: 13

m
n

answ

1
2
?

mult
line: 8

m
n

1
2

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

main
line: 13

m
n

answ

1
2
?

mult
line: 8

m
n

1
2

mult_helper
line: 7

m
n

acc
n'

1
2
0
2

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

main
line: 13

m
n

answ

1
2
?

mult
line: 8

m
n

1
2

mult_helper
line: 7

m
n

acc
n'

1
2
0
2

mult_helper
line: 7

m
n

acc
n'

1
2
1
1

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

main
line: 13

m
n

answ

1
2
?

mult
line: 8

m
n

1
2

mult_helper
line: 7

m
n

acc
n'

1
2
0
2

mult_helper
line: 7

m
n

acc
n'

1
2
1
1

mult_helper
line: 7

m
n

acc
n'

1
2
2
0

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

main
line: 13

m
n

answ

1
2
2

mult
line: 8

m
n

1
2

mult_helper
line: 7

m
n

acc
n'

1
2
0
2

mult_helper
line: 7

m
n

acc
n'

1
2
1
1

mult_helper
line: 7

m
n

acc
n'

1
2
2
0

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Optimization:
Tail Recursion

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

main
line: 13

m
n

answ

1
2
?

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

main
line: 13

m
n

answ

1
2
?

mult
line: 8

m
n

1
2

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

main
line: 13

m
n

answ

1
2
?

mult_helper
line: 7

m
n

acc
n'

1
2
0
2

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

main
line: 13

m
n

answ

1
2
?

mult_helper
line: 7

m
n

acc
n'

1
2
1
1

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

main
line: 13

m
n

answ

1
2
?

mult_helper
line: 7

m
n

acc
n'

1
2
2
0

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Frame Symbol Value
init

line: 16
mult
main

<fun>
<fun>

main
line: 13

m
n

answ

1
2
2

1. let mult m n =
2. let rec mult_helper acc n' =
3. if m == 0
4. then 0
5. else if n == 0
6. then acc
7. else mult_helper (m + acc) (n - 1)
8. in mult_helper 0 n
9.
10. let main =
11. let m = 1 in
12. let n = 2 in
13. let answ = mult m n in
14. answ
15.
16. main;;

Tail Call Optimization
•Tail calls do not require any modifications to the activation frame. Thus, we do

not need to keep them around.

•Compiler can detect tail recursion, and then optimize its stack usage by
discarding each activation frame during evaluation.

•Constant space usage!

•The same performance as loops!

•Not all PLs offer this tail call optimization!

Tail Call Optimization
PL Tail Call

Optimized Compiler

C/C++ Yes GCC
Swift Yes All

Python No All
C# No All

Java Partially JVM
OCaml Yes All
Haskell Yes GHC

javascript Yes ES6

