Core Design Concepts Discussed:

Performance and Optimization
of Recursive Functions

Harley Eades Il



Consider evaluating the following recursive function:

let rec mult m n =

1f m ==
then 0
else 1if n == 0
then 0
else let r¢ = mult m (n - 1)
let ret = m + rc 1in
ret
let main =

let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

in

The Performance Hit



O ~J O O & WD K-

= O
O o

11.
12.
13.
14.
15.
16.

let rec mult m n =

1f m ==

then 0

else 1if
the
els

let main
let m
let n

n == 0
n O
e let rc = mult m (n - 1)
let ret = m + rc 1in
ret
= 1 1in
= 2 1n

let answ = mult m n 1in
answ

main; ;

in

Frame Symbol Value
NIt ackermann <fun>
line: 16 main <fun>




O ~J O O & WD K-

= O
O o

11.
12.
13.
14.
15.
16.

let rec mult m n =

1f m ==

then 0

else 1if
the
els

let main
let m
let n

n == 0
n O
e let rc = mult m (n - 1)
let ret = m + rc 1in
ret
= 1 1in
= 2 1n

let answ = mult m n 1in
answ

main; ;

in

Frame Symbol Value
INit ackermann <fun>
line: 16 main <fun>
. m 1
main n 5

line: 13
answ ?




O ~J O O & WD K-

= O
O o

11.
12.
13.
14.
15.
16.

let rec mult m n =

1f m ==

then 0

else 1if
the
els

let main
let m
let n
let

main; ;

n == 0

n O

e let rc = mult m (n - 1)
let ret = m + rc 1in
ret

= 1 1in

= 2 1n

answ = mult m n 1n
answ

in

Frame Symbol Value
INit ackermann <fun>
line: 16 main <fun>
. m 1
main o 5

line: 13
answ ?
mult; m L
. n 2
line 6
rc ?




1. let rec mult m n = Frame S)’mbOI VCIIUQ
2. 1f m == init ackermann <fun>
3. then 0 line: 16 main <fun>
4., else 1f n == 0 | m 1
5. then 0 main " :
6. else let rc¢ = mult m (n - 1) in ' answ ?
7. let ret = m + rc in
8. ret mult: m L
. n 2
9. line 6
: rc ?
10. let main =
11. let m = 1 in .
12. let n = 2 in mult; 2 ]
13. let answ = mult m n in line 7
ret ?
14. answ
15.
16. main;;




O ~J O O & WD K-

= O
O o

11.
12.
13.
14.
15.
16.

let rec mu
1f m ==
then 0
else 1f n
then
else

let main
let m =
let n
let

main; ;

lt m n =

== 0

0

let rc =
let ret =
ret

1 in
= 2 1n

mult m (n - 1)

m + rc 1n

answ = mult m n 1n

answ

in

Frame Symbol Value
INit ackermann <fun>
line: 16 main <fun>
. m 1
main o ,
line: 13
answ ?
mult m L
. n 2
line: 6
rc ?
mult m L
. n 1
line: 7
rc ?
mult m 1
line: 5 n 0




1. let rec mult m n = Frame Symbol Value
2. 1f m == INit ackermann <fun>
3. then 0 line: 16 main <fun>
4, else if n == 0
. m 1

5. then 0 }nmn n 2
6. else let r¢ = mult m (n - 1) in ine: 13 Answ >
7. let ret = m + rc in
8. ret mu“: Irrll ;
9. line: 6 5
10. let main = te )
11. let m = 1 in
12. let n = 2 1n mult m i
13. let answ = mult m n in line: 7 n
14. answ ret 0
15.
16. main;; mult m L

line: 5 n 0




O ~J O O & WD K-

= O
O o

11.
12.
13.
14.
15.
16.

let rec mu
1f m ==
then 0
else 1f n
then
else

let main
let m =
let n
let

main; ;

lt m n =

== 0

0

let rc =
let ret =
ret

1 in
= 2 1n

mult m (n - 1)

m + rc 1n

answ = mult m n 1n

answ

in

Frame Symbol Value
INit ackermann <fun>
line: 16 main <fun>
. m 1
main o ,
line: 13
answ ?
mult m L
. n 2
line: 6
rc 1
mult m L
. n 1
line: 7
rc 0
mult m 1
line: 5 n 0




O ~J O O & WD K-

= O
O o

11.
12.
13.
14.
15.
16.

let rec mu
1f m ==
then 0
else 1f n
then
else

let main
let m =
let n
let

main; ;

lt m n =

== 0

0

let rc =
let ret =
ret

1 in
= 2 1n

mult m (n - 1)

m + rc 1n

answ = mult m n 1n

answ

in

Frame Symbol Value
INit ackermann <fun>
line: 16 main <fun>
. m 1
main o ,
line: 13
Answ 2
mult m L
. n 2
line: 6
rc 1
mult m L
. n 1
line: 7
rc 0
mult m 1
line: 5 n 0




O ~J O O & WD K-

= O
O o

11.
12.
13.
14.
15.
16.

let rec mult m n =

if m ==
then 0

else 1if n
then

els

let main
let m
let n

e

== (

0

let r¢ = mult m (n - 1)
let ret = m + rc 1in
ret

1 in
= 2 1n

let answ = mult m n in

main; ;

answ

in

Bad for performance: making a recursive
call in an argument position (line 7).

This results in the bindings of an
activation record depending on the
return value of a new activation record.

Thus, the compiler will create lots of
activation records that cannot be popped

off of the stack until the end of
evaluation.

This results in a bad use of memory.



Tail Recursion using the accumulator pattern

Non-tail recursive: Tail recursive:

1. let rec mult m n = 1. let rec mult helper acc m n =

2. 1f m == 2. 1f m ==

3. then 0 3. then 0

4., else 1f n == 4., else 1f n == 0

5. then 0 5. then acc

6. elsem + (mult m (n - 1)) 6. else mult helper (m + acc) m (n - 1)
7.
8. let mult m n = mult helper 0 m n




O ~J o O & Wi Bk

e
AU WN R O

. let mult m n =

let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

. let main =

let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

. main;;

(n - 1)

Evaluation of
Tail Recursion



O ~J o O & Wi Bk

= O
O o

11.
12.
13.
14.
15.
16.

let mult m n =
let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

let main =
let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Frame Symbol Value
init mult <fun>
line: 16 main <fun>




O ~J o O & Wi Bk

= O
O o

11.
12.
13.
14.
15.
16.

let mult m n =
let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

let main =
let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Frame Symbol Value
init mult <fun>
line: 16 main <fun>
, m 1
maln n 2
line: 13
answ ?




O ~J o O & Wi Bk

= O
O o

11.
12.
13.
14.
15.
16.

let mult m n =
let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

let main =
let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Frame Symbol Value
init mult <fun>
line: 16 main <fun>
, m 1
maln n 2
line: 13
answ ?
mult m 1
line: 8 n 2




O ~J o O & Wi Bk

= O
O o

11.
12.
13.
14.
15.
16.

let mult m n =
let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

let main =
let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Frame Symbol Value
init mult <fun>
line: 16 main <fun>
, m 1
maln n 2
line: 13
answ ?
mult m 1
line: 8 n 2
m 1
mult helper n 2
line: 7 acc 0
n' 2




L. let mult m n = Frame Symbol Value
2. let rec mult helper acc n' =
: — init mult <fun>
3. 1f m == . .
line: 16 malin <fun>
4. then 0
: _ , m 1
5. else 1f n == main ,
6. then acc line: 13 &
answ ?
7. else mult helper (m + acc) (n - 1)
8. in mult helper 0 n mult m 1
; _ line: 8 n 2
10. let main = m 1
11. let m = 1 in muiF—helser n g
12. let n = 2 in Hhes anc,c X
13. let answ = mult m n in
14. answ m L
mult helper n 2
15. .
| line: 7 acc 1
16. main;; ,
n 1




O ~J o O & Wi Bk

\O

10.
11.
12.
13.
14.
15.
16.

let mult m n =
let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

let main =
let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Frame Symbol Value
init mult <fun>
line: 16 main <fun>
, m 1
main N 5
line: 13
answ ?
mult m 1
line: 8 n 2
m 1
mult helper n 2
line: 7 acc 0
n' 2
m 1
mult helper n 2
line: 7 acc 1
n' 1
m 1
mult helper n 2
line: 7 acc 2
n' 0




O ~J o O & Wi Bk

\O

10.
11.
12.
13.
14.
15.
16.

let mult m n =
let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

let main =
let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Frame Symbol Value
init mult <fun>
line: 16 main <fun>
, m 1
main N 5
line: 13
Answ 2
mult m 1
line: 8 n 2
m 1
mult helper n 2
line: 7 acc 0
n' 2
m 1
mult helper n 2
line: 7 acc 1
n' 1
m 1
mult helper n 2
line: 7 acc 2
n' 0




O ~J o O & Wi Bk

= O
O o

. let mult m n =

let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

. let main =
11.
12.
13.
14.
15.
16.

let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Optimization:
Tail Recursion



O ~J o O & Wi Bk

= O
O o

11.
12.
13.
14.
15.
16.

let mult m n =
let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

let main =
let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Frame Symbol Value
init mult <fun>
line: 16 main <fun>




O ~J o O & Wi Bk

= O
O o

11.
12.
13.
14.
15.
16.

let mult m n =
let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

let main =
let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Frame Symbol Value
init mult <fun>
line: 16 main <fun>
, m 1
maln n 2
line: 13
answ ?




O ~J o O & Wi Bk

= O
O o

11.
12.
13.
14.
15.
16.

let mult m n =
let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

let main =
let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Frame Symbol Value
init mult <fun>
line: 16 main <fun>
, m 1
maln n 2
line: 13
answ ?
mult m 1
line: 8 n 2




O ~J o O & Wi Bk

= O
O o

11.
12.
13.
14.
15.
16.

let mult m n =
let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

let main =
let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Frame Symbol Value
init mult <fun>
line: 16 main <fun>
, m 1
maln n 2
line: 13
answ ?
m 1
mult helper n 2
line: 7 acc 0
n' 2




O ~J o O & Wi Bk

= O
O o

11.
12.
13.
14.
15.
16.

let mult m n =
let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

let main =
let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Frame Symbol Value
init mult <fun>
line: 16 main <fun>
, m 1
maln n 2
line: 13
answ ?
m 1
mult helper n 2
line: 7 acc 1
n' 1




O ~J o O & Wi Bk

= O
O o

11.
12.
13.
14.
15.
16.

let mult m n =
let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

let main =
let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Frame Symbol Value
init mult <fun>
line: 16 main <fun>
, m 1
maln n 2
line: 13
answ ?
m 1
mult helper n 2
line: 7 acc 2
n' 0




O ~J o O & Wi Bk

= O
O o

11.
12.
13.
14.
15.
16.

let mult m n =
let rec mult helper acc n' =
1f m ==
then 0
else 1f n ==
then acc
else mult helper (m + acc)
in mult helper 0 n

let main =
let m = 1 1in
let n = 2 1in
let answ = mult m n 1n
answ

main; ;

(n - 1)

Frame Symbol Value
init mult <fun>
line: 16 main <fun>
, m 1
maln n 2
line: 13
answ 2




Tail Call Optimization

* Tail calls do not require any modifications to the activation frame. Thus, we do
not need to keep them around.

 Compiler can detect tail recursion, and then optimize its stack usage by
discarding each activation frame during evaluation.

e Constant space usage!
* The same performance as loops!

* Not all PLs offer this tail call optimization!



Tail Call Optimization

PL O.I:tlilnfi:: d Compiler
C/C++ Yes GCC
Swift Yes A
Python No A
C# No A
Java Partially JVM
OCaml Yes All
Haskell Yes GHC
javascript Yes ESG




